Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 046402    DOI: 10.1088/0256-307X/29/4/046402
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Specific Heat in a Typical Metallic Glass Former
KE Hai-Bo,ZHAO Zuo-Feng,WEN Ping**,WANG Wei-Hua
Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
KE Hai-Bo, ZHAO Zuo-Feng, WEN Ping** et al  2012 Chin. Phys. Lett. 29 046402
Download: PDF(578KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The specific heat in a typical Pd40Ni10Cu30P20 metallic glass forming system is investigated. It is found that the specific heat of the metallic liquid is around 4.7R (R is the gas constant) and that it is almost independent of temperature. The glass transition observed during cooling is accompanied by a decrease in the specific heat of 1.5R. The specific heat of the metallic glass is similar to that of its crystalline phases, contributed mainly from atomic vibrations. Combined with the results of the structural relaxation and diffusivities, we demonstrate an intrinsic connection between the atomic motion and the specific heat in the metallic glass-forming liquid. The results support the idea that glass transition is a process accompanied by the freezing of most of the atomic transitional motions in a metallic supercooled liquid during cooling.

Keywords: 64.70.P-      64.70.pe      65.40.Ba      66.10.C-     
Received: 24 February 2012      Published: 04 April 2012
PACS:  64.70.P- (Glass transitions of specific systems)  
  64.70.pe (Metallic glasses)  
  65.40.Ba (Heat capacity)  
  66.10.C- (Diffusion and thermal diffusion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/046402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/046402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KE Hai-Bo
ZHAO Zuo-Feng
WEN Ping**
WANG Wei-Hua
[1] Jackle J 1986 Rep. Prog. Phys. 49 171
[2] Donth E 2001 The Glass Transition: Relaxation Dynamics in Liquids and Disordered Material (Berlin: Springer)
[3] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[4] Dyre J C 2006 Rev. Mod. Phys. 78 953
[5] Torquato S 2000 Nature 405 521
[6] Kauzmann W 1948 Chem. Rev. 43 219
[7] Tanaka H 2003 Phys. Rev. Lett. 90 055701
[8] Landau L D and Lifshitz E M 1999 Statistical Physics Part 1 (Oxford: Butterworth-Heinemann)
[9] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[10] Dyre J C et al 1996 Phys. Rev. B 53 2171
[11] Wunderlich B 1960 J. Chem. Phys. 64 1052
[12] Bernal J D 1960 Nature 185 68
[13] Greer A L 1995 Science 267 1947
[14] Wen P, Zhao D Q et al 2004 Appl. Phys. Lett. 84 2790
[15] Zhao Z F et al 2007 Phys. Rev. B 75 174201
[16] Meye A et al 1999 Phys. Rev. Lett. 83 5027
[17] Tang X- P et al 1999 Nature 402 160
[18] Johnson W L 1999 MRS Bull. 24 42
[19] Zhao Z F et al 2006 Appl. Phys. Lett. 89 71920
[20] Bartsch A et al 2010 Phys. Rev. Lett. 104 195901
[21] Nishiyama N et al 2000 Appl. Phys. Lett. 76 3914
[22] Johari G P 2002 J. Non-Cryst. Solids 307 317
[23] Hodge I M 1994 J. Non-Cryst. Solids 169 211
[24] Xu D and Johnson W L 2006 Phys. Rev. B 74 024207
[25] Wen P et al 2010 Phys. Status Solidi A 207 2693
[26] Xia X and Wolynes P G 2001 Phys. Rev. Lett. 86 5526
[27] Castaing B and Souletie J 1991 J. Phys. I 1 403
[28] Monthus C and J Bouchaud 1996 J Phys. A 29 3847
[29] Chudley C T and Elliott R T 1961 Prog. Phys. Soc. 77 353
[30] Goldstein M 1969 J. Chem. Phys. 51 3728
[31] Voigtmann T and Horbach J 2009 Phys. Rev. Lett. 103 205901
[32] Moreno A J and Colmenero J 2006 Phys. Rev. E 74 021409
[33] Flubacher P et al 1960 J. Chem. Phys. 33 1751
[34] Blackman M 1941 Rep. Prog. Phys. 8 11
[35] Ke H B et al 2010 Appl. Phys. Lett. 96 251902
Related articles from Frontiers Journals
[1] WANG Dan, PENG Hong-Yan, XU Xiao-Yu, CHEN Bao-Ling, WU Chun-Lei, SUN Min-Hua. Strong-Superstrong Transition in Glass Transition of Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(3): 046402
[2] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 046402
[3] ZHANG Chun-Zhi, HU Li-Na**, BIAN Xiu-Fang, YUE Yuan-Zheng, . Fragile-to-Strong Transition in Al-Ni-M (M=La, Pr, Nd) Metallic Glasses[J]. Chin. Phys. Lett., 2010, 27(11): 046402
[4] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 046402
[5] XU Guo-Liang, CHEN Jing-Dong, XIA Yao-Zheng, LIU Xue-Feng, LIU Yu-Fang, ZHANG Xian-Zhou. First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride[J]. Chin. Phys. Lett., 2009, 26(5): 046402
[6] JIANG Min-Qiang, JIANG Si-Yue$, DAI Lan-Hong,. Inherent Shear-Dilatation Coexistence in Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(1): 046402
[7] YANG Hong-Wang, TONG Wei-Ping, ZHAO Xiang, ZUO Liang, WANG Jian-Qiang. Observation of β-Relaxation in Sub-Tg Isothermally Annealed Al-Based Metallic Glasses[J]. Chin. Phys. Lett., 2008, 25(9): 046402
[8] MU Gang, ZHU Xi-Yu, FANG Lei, SHAN Lei, REN Cong, WEN Hai-Hu. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements[J]. Chin. Phys. Lett., 2008, 25(6): 046402
[9] GUO Xiao-Lin, SHAN De-Bin, MA Ming-Zhen, GUO Bin. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(6): 046402
[10] CUI Guang-Lei, GU Min, YU Yao, XU Xi-Bin, WANG Li-Hang, CHENXiao, FENG Duan, TANG Tong Bor. Specific Heat of Rhombohedral Polymeric C60 in Temperature Range 300--2K[J]. Chin. Phys. Lett., 2008, 25(2): 046402
[11] GUO Ming-Xiu, LI Jin-Dong, FU Wen-Qiang, SHI Xiang-Chun, HU Qi-Quan, CHEN Wei-Biao. A Kilowatt Diode-Pumped Solid-State Heat-Capacity Double-Slab Laser[J]. Chin. Phys. Lett., 2006, 23(9): 046402
[12] FAN Zhen-Jun, JING Xiu-Nian, ZHANG Dian-Lin. Compositional Dependence of Electronic Specific Heat in AlCuCo Decagonal Quasicrystals: Evidence for the Hume--Rothery Mechanism of Phase Formation[J]. Chin. Phys. Lett., 2005, 22(7): 046402
Viewed
Full text


Abstract