CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Enhanced Surface Premelting of Ni90Si10 Nanoparticles |
LÜ Yong-Jun** |
School of Physics, Beijing Institute of Technology, Beijing 100081 |
|
Cite this article: |
LÜ, Yong-Jun 2012 Chin. Phys. Lett. 29 046401 |
|
|
Abstract Molecular dynamics simulations are used to investigate the melting of Ni90Si10 nanoparticles. The melting is found to originate from the surface prematurely. By means of the bond order parameter, the thickness of the surface liquid layer during surface premelting is calculated. The results show that the thickness of the liquid layer increases in a logarithmic−type manner on heating to the melting temperature, which is larger than the values of elemental Ni nanoparticles. Furthermore, the temperature range associated with the premelting of Ni90Si10 nanoparticles is wider. Both theory and simulations indicate that the high Si concentration of the surface liquid layer formed via surface segregation during crystallization due to Gibbs adsorption is the main reason for enhanced surface premelting. The simulations suggest that the crystallization process used to prepare samples greatly influences the melting behavior of nanoparticles.
|
|
Received: 12 October 2011
Published: 04 April 2012
|
|
PACS: |
64.70.D-
|
(Solid-liquid transitions)
|
|
64.70.kd
|
(Metals and alloys)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
68.08.De
|
(Liquid-solid interface structure: measurements and simulations)
|
|
|
|
|
[1] Sinfelt H 1983 Bimetallic Catalysts–Discoveries, Concepts, and Applications (New York: John Wiley and Son)[2] Pawelec B, Cano Serrano E, Campos Martin J M, Navarro R M, Thomas S and Fierro J L G 2004 Appl. Catal. A 275 127[3] Cleveland C L, Luedtke W D and Landman U 1999 Phys. Rev. B 60 5065[4] Puri P and Yang V 2007 J. Phy. Chem. C 111 11776[5] Duan H et al 2007 Chem. Phys. 333 57[6] Shpyrko O et al 2003 Phys. Rev. B 67 115405[7] Wang L, Zhang Y, Bian X and Chen Y 2003 Phys. Lett. A 310 197[8] Xiao S, Hu W and Yang J 2005 J. Phys. Chem. B 109 20339[9] Mejía Rosales S J, Fernández Navarro C, Pérez Tijerina E, Montejano Carrizales J M and José Yacamán M 2006 J. Phys. Chem. B 110 12884[10] Lai S L, Guo J Y, Petrova V, Ramanath G and Allen L H 1996 Phys. Rev. Lett. 77 99[11] Kofman R, Cheyssac P, Lereah Y and Stella A 1999 Eur. Phys. J. D 9 441[12] Hsieh T E and Baluffi R W 1989 Acta Metal. 37 1637[13] Sankaranarayanan S K R S, Bhethanabotla V R and Joseph B 2005 Phys. Rev. B 71 195415[14] Baskes M I 1992 Phys. Rev. B 46 2727[15] Baskes M I, Nelson J S and Wright A F 1989 Phys. Rev. B 40 6085[16] Baskes M I, Angelo J E and Bisson L C 1994 Modelling Simul. Mater. Sci. Eng. 2 505[17] Lü Y J 2012 Phil. Mag. Lett. 92 56[18] Lü Y J and Entel P 2011 Phys. Rev. B 84 104203[19] Kofman R et al 1994 Surf. Sci. 303 231[20] Yang Q W, Zhu R Z, Wei J A and Wen Y H 2004 Chin. Phys. Lett. 21 2171[21] Song H, Fensin S J, Asta M and Hoyt J J 2010 Scripta Mater. 63 128 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|