Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 044401    DOI: 10.1088/0256-307X/29/4/044401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules
LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan
School of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100124
Cite this article:   
LIU Jing, FENG Shi-Wei, ZHANG Guang-Chen et al  2012 Chin. Phys. Lett. 29 044401
Download: PDF(544KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The temperature in the active region of semiconductor modules can be measured by a vacuum system method. The test device is positioned on a vacuum test platform and heated in two ways, from the chip and from the case, to identify the required heat to establish stable temperature gradients for the two processes, respectively. A complementary relationship between the temperatures under the two heating methods is found. By injecting the total heat into the device, the resulting uniform temperature can be derived from the temperature curves of the chip and case. It is demonstrated that the temperature obtained from this vacuum system method is equivalent to the normal operating temperature of the device in the atmosphere. Further comparison of our result with that of the electrical method also shows good agreement.
Received: 25 October 2011      Published: 04 April 2012
PACS:  44.10.+i (Heat conduction)  
  07.30.Cy (Vacuum pumps)  
  78.40.Fy (Semiconductors)  
  01.40.gf (Theory of testing and techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/044401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/044401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jing
FENG Shi-Wei
ZHANG Guang-Chen
ZHU Hui
GUO Chun-Sheng
QIAO Yan-Bin
LI Jing-Wan
[1] Blackburn D L 2004 Proc of 20th IEEE Semiconductor Thermal Measurement & Management Symp. (USA 9-11 March 2004) pp 70
[2] Salem A M 2010 Chin. Phys. Lett. 27 064401
[3] Xu D, Lu H, Huang L, Azuma S, Kimata M and Uchida R 2002 IEEE Trans. Indust. Appl. 38 1426
[4] Miyajima H, Kan H, Kanzaki T, Furuta S, Yamanaka M, Lzawa Y and Nakai S 2004 Opt. Lett. 43 6074
[5] Székely V 1998 Microelectron. J. 28 277
[6] Zhang G C, Feng S W and Hu P F 2011 Chin. Phys. Lett. 28 017201
[7] Aubry R, Durand O, Dobson P, Mills G, Cassette S and Delage S 2007 IEEE Trans. Electron Devices 54 385
[8] Lee Chin C 2004 IEEE Photon. Technol. Lett. 16 1706
[9] Hefner A, Berning D and Blackburn D 2001 IEEE Semi. Therm. Symp. (USA 20–22 January 2001) pp 43
[10] Ajami A H, Banerjee K and Pedram M 2005 IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 24 849
[11] Gao H and Yu Q Q 2009 Chin. Phys. Lett. 26 065201
Related articles from Frontiers Journals
[1] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 044401
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 044401
[3] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 044401
[4] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 044401
[5] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 044401
[6] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 044401
[7] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 044401
[8] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 044401
[9] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 044401
[10] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 044401
[11] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 044401
[12] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 044401
[13] Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun, Yan-Mei Kong, Chih-Wei Ku, Da-Peng Chen. A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks[J]. Chin. Phys. Lett., 2017, 34(2): 044401
[14] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 044401
[15] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 044401
Viewed
Full text


Abstract