Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 041201    DOI: 10.1088/0256-307X/29/4/041201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass
JIANG Yu1,GONG Hao2,SUN Wei-Min2,3,ZONG Hong-Shi2,3**
1Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004
2Department of Physics, Nanjing University, Nanjing 210093
3Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
Cite this article:   
JIANG Yu, GONG Hao, SUN Wei-Min et al  2012 Chin. Phys. Lett. 29 041201
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract From the graphical representation of the Dyson–Schwinger equation for the dressed gluon propagator it is shown that the gluon propagator in the Wigner phase should be different from that in the Nambu phase. Based on this analysis, we propose a modified gluon propagator to reflect this fact. With such a modified gluon propagator, in the framework of the Nambu–Jona–Lasinio (NJL) model, we obtain the Wigner solution to the quark gap equation at finite current quark mass, which has not been found in literature. This provides a new point of view to study partial restoration of chiral symmetry at finite temperature and chemical potential.
Received: 29 December 2011      Published: 04 April 2012
PACS:  12.38.Mh (Quark-gluon plasma)  
  12.39.-x (Phenomenological quark models)  
  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/041201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/041201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Yu
GONG Hao
SUN Wei-Min
ZONG Hong-Shi
[1] Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477

[2] Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1

[3] Cahill R T and Roberts C D 1985 Phys. Rev. D 32 2419

[4] Tandy P C 1997 Prog. Part. Nucl. Phys. 39 117

[5] Stephanov M 2006 arXiv:hep-lat/0701002

[6] Zong H S, Sun W M, Ping J L, Lu X F and Wang F 2005 Chin. Phys. Lett. 22 3036

[7] Chang L, Liu Y X, Bhagwat M S, Roberts C D and Wright S V 2007 Phys. Rev. C 75 015201

[8] Chang L, Liu Y X, Bhagwat M S, Roberts C D and Wright S V 2007 Phys. Lett. B 645 167

[9] Williams R, Fischer C S and Pennington M R 2007 Acta Phys. Polonica B 38 2803

[10] Feng H T, Chang L, Sun W M, Zong H S and Liu Y X 2006 Int. J. Mod. Phys. A21 6003

[11] Steele T G 1989 Z. Phys. C 42 499

[12] Klevansky S P 1992 Rev. Mod. Phys. 64 649
Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 041201
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 041201
[3] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 041201
[4] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 041201
[5] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 041201
[6] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 041201
[7] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 041201
[8] Barbara Betz, Miklos Gyulassy. Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC[J]. Chin. Phys. Lett., 2015, 32(12): 041201
[9] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 041201
[10] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 041201
[11] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 041201
[12] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 041201
[13] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 041201
[14] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 041201
[15] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 041201
Viewed
Full text


Abstract