CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition |
BI Zhi-Wei1, HAO Yue1**, FENG Qian1, GAO Zhi-Yuan2, ZHANG Jin-Cheng1, MAO Wei1, ZHANG Kai1, MA Xiao-Hua1, LIU Hong-Xia1, YANG Lin-An1, MEI Nan1, CHANG Yong-Ming1 |
1Key Lab of Fundamental Science for National on Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
2Lab of Photoelectronic Technology, School of Electronic and Control Engineering, Beijing University of Technology, Beijing 100124
|
|
Cite this article: |
ZHANG Kai, ZHANG Jin-Cheng, MAO Wei et al 2012 Chin. Phys. Lett. 29 028501 |
|
|
Abstract We investigate the characteristics of AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with a NbAlO/Al2O3 lamination dielectric deposited by atomic layer deposition (ALD) as the gate insulator. A large gate voltage swing (GVS) of 3.96 V and a high breakdown voltage of −150 V for the MIS-HEMT were obtained. We present the gate leakage current mechanisms and analyze the reason for the reduction of the leakage current. Compared with traditional HEMTs, the maximum drain current is improved to 960 mA/mm, indicating that NbAlO layers could reduce the surface-related depletion of the channel layer and increase the sheet carrier concentration. In addition, the maximum oscillation frequency of 38.8 GHz shows that the NbAlO high-k dielectric can be considered as a potential gate oxide comparable with other dielectric insulators.
|
Keywords:
85.30.Tv
81.15.Gh
73.40.Qv
77.55.+f
|
|
Received: 14 September 2011
Published: 11 March 2012
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
77.55.+f
|
|
|
|
|
|
[1] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[2] Hu X, Koudymov A, Simin G, Yang J, Khan M A, Tarakji A, Shur M S and Gaska R 2001 Appl. Phys. Lett. 79 2832
[3] Mizuno S, Ohno Y, Kishimoto S, Maezawa K and Mizutani T 2002 Jpn. J. Appl. Phys. 41 5125
[4] Kordos P, Heidelberger G, Bernat J, Fox A, Marso M and Luth H 2005 Appl. Phys. Lett. 87 143501
[5] Yue Y Z, Hao Y, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. Phys. Lett. 24 2419
[6] Mao W, Zhang J C, Xue J S et al 2010 Chin. Phys. Lett. 27 128501
[7] Kordos P, Gregusova D, Stoklas R, Cico K and Novak J 2007 Appl. Phys. Lett. 90 123513
[8] Hu G Z, Yang L, Yang L Y et al 2010 Chin. Phys. Lett. 27 087302
[9] Kuzmik J, Pozzovivo G, Abermann S et al 2008 IEEE Electron Dev. 55 937
[10] Nanjo T, Oishi T, Suita M and Tokuda Y 2006 Appl. Phys. Lett. 88 043503
[11] Bi Z W, Feng Q, Hao Y et al 2010 Chin. Phys. B 19 077303
[12] Allpress J G, Sanders J V and Wadsley A D 2006 Phys. Status Solidi B 25 541
[13] Miyoshi M, Egawa T, Ishikawa H et al 2005 J. Appl. Phys. 98 063713
[14] Nakano Y, Kachi T and Jimbo T 2003 Appl. Phys. Lett. 82 2443
[15] Kordos P, Gregusova D, Stoklas R, Gazi S and Novak J 2008 Solid State Electron. 52 973
[16] Khan M A, Hu X, Tarekji A, Simin G and Yang J 2000 Appl. Phys. Lett. 77 1339
[17] Gu W, Chen C, Duan H et al 2009 J. Semiconduct. 30 044002
[18] Kao C J, Chen M C, Tun C J and Chi G C 2005 J. Appl. Phys. 98 064506
[19] Smith F W, Calawa A R, Chen C L, Manfre M J and Mahoney L J 1988 IEEE Electron. Device Lett. 9 77
[20] Marso M, Heidelberger G, Indlekofer K M, Bernat J, Fox A, Kordos P and Luth H 2006 IEEE Electron Devices 53 1517
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|