CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Domain Rotation Simulation of the Magnetostriction Jump Effect of <110> Oriented TbDyFe Crystals |
ZHANG Chang-Sheng, MA Tian-Yu**, PAN Xing-Wen, YAN Mi |
Department of Materials Science and Engineering, and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
ZHANG Chang-Sheng, YAN Mi, PAN Xing-Wen et al 2012 Chin. Phys. Lett. 29 027501 |
|
|
Abstract The compressive pre-stress induced magnetostriction jump effect of an [110] oriented TbDyFe crystal is simulated by tracking the initial redistribution of magnetic domains and their volume fraction evolutions under external magnetic fields. Through searching for the free energy minima within both (110) and (110) planes, it is found that the axial compressive pre−stress not only switches magnetizations of the 35° domains toward the perpendicular plane, but also switches magnetizations of the 90° domains approaching the [110] direction. When increasing the stress magnitude, the volume fraction for 35° domains decreases and the one for the [110] domain increases rapidly. However, the volume fraction for the four 90° domains within the perpendicular plane first increases to a maximum under a certain stress magnitude and further decreases. The stress-induced anisotropy thereafter changes the volume fraction evolutions during the magnetization process, which explains well the magnetostriction jump effect.
|
Keywords:
75.80.+q
75.50.Bb
|
|
Received: 14 November 2011
Published: 11 March 2012
|
|
PACS: |
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
75.50.Bb
|
(Fe and its alloys)
|
|
|
|
|
[1] Clark A E et al 1988 J. Appl. Phys. 63 3910
[2] Yang Y V et al 2011 Appl. Phys. Lett. 98 012503
[3] Jiang C B et al 2008 J. Phys. D: Appl. Phys. 41 155012
[4] Wu G H et al 1995 Appl. Phys. Lett. 67 2005
[5] Pei Y M and Fang D N 2007 Chin. Phys. Lett. 24 161
[6] Ma T Y et al 2005 Appl. Phys. Lett. 86 162505
[7] Wang Z B et al 2011 J. Appl. Phys. 109 123923
[8] Pei Y M et al 2009 J. Magn. Magn. Mater. 321 2783
[9] Zhang T L et al 2004 Smart Mater. Struct. 13 473
[10] Zhang H 2011 Appl. Phys. Lett. 98 232505
[11] Zhou Y et al 2011 Chin. Phys. Lett. 28 107503
[12] Hao Y M et al 2009 Chin. Phys. Lett. 26 026501
[13] Jin Y M and Chopra H D 2011 Phys. Rev. B 84 140401
[14] Zheng X J and Liu X E 2005 J. Appl. Phys. 97 053901
[15] Jiles D C and Thoelke J B 1991 IEEE Trans. Magn. 27 5352
[16] Mei W et al 1998 J. Appl. Phys. 84 6208
[17] Wang Z B et al 2010 J. Appl. Phys. 108 063908
[18] Clark A E 1980 Ferromagnetic Materials ed Wohlfarth E P (Amsterdam: North Holland) vol 1 p 531
[19] Armstrong W D 1997 J. Appl. Phys. 81 2321
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|