Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 024203    DOI: 10.1088/0256-307X/29/2/024203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers
ZHENG Yi-Bo1,2**, YAO Jian-Quan1, ZHANG Lei2,3, WANG Yuan1,2, WEN Wu-Qi1, JING Lei1, DI Zhi-Gang1
1Institute of Laser & Otpoelectronics, College of Precision Instruments and Opto-Electronic Engineering, Key Laboratory of Opto-electronics Information and Technical Science (Ministry of Education), Tianjin University, Tianjin 300072
2Hebei Key Laboratory of Optoelectronic Information and Geo-detection Technology, Shijiazhuang University of Economics, Shijiazhuang 050031
3The College of Gems and Materials Technology, Shijiazhuang University of Economics, Shijiazhuang 050031
Cite this article:   
Download: PDF(848KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated. The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber. The results show that the temperature decreases from the pump end to the launch end exponentially. Moreover, the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method. The numerical results match well with the experimental data and the coating temperature reaches 422.7 K, approaching the critical value of polymer cladding, when the pumping power is 40 W. Therefore the fiber end cooling is necessary to achieve power scaling. Compared with natural convection methods, the copper cooling scheme is found to be an effective method to reduce the fiber temperature.

Keywords: 42.55.Wd      42.55.Xi     
Received: 22 September 2011      Published: 11 March 2012
PACS:  42.55.Wd (Fiber lasers)  
  42.55.Xi (Diode-pumped lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/024203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/024203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Yeong Y, Sahu J K, Payne D N and Nilsson 2004 Opt. Express 12 6088

[2] Ruan S C, Du C L, Yang B and Zhu C Y, Yao J Q and Lin H J 2004 Acta Photon. Sin. 33 1156

[3] Christopher D B and Fabio D T 2006 Appl. Phys. Lett. 89 111119

[4] Wu W D, Ren T Q, Zhou J, Du S T, Gu X J and Lou Q H 2011 Chin. Phys. Lett. 28 114206

[5] Limpert J, Schreiber T, Nolte S, Zellmer H, Tünnermann A, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A and Jakobsen C 2003 Opt. Express 11 818

[6] Caroline L, Büend O, Guillaume M, Johan B, Martin B, Thomas S, Eric C and Ammar H 2010 Opt. Lett. 35 3156

[7] Michaille L, David M T, Charlotte R B, Terence J S and Benjamin G W 2008 Opt. Lett. 33 71

[8] Michaille L, Bennett C R, Taylor D M and Shepherd T J 2009 IEEE J. Sel. Top. Quantum Electron. 15 328

[9] Cheng X J and Xu J Q 2006 Opt. Eng. 45 24204

[10] Elahi P, Nadgaran H and Kalantarifard F 2007 Pramana 68 529

[11] Chen S and Feng Y 2008 Acta Photon. Sin. 37 1134

[12] Han X M, Yang D X, Zhao J L, Hou J P, Duan K L and Wang Y S 2009 Chin. J. Lasers 36 2822

[13] Li J F, Duan K L, Dai Z Y, Ou Z H, Liu Y and Liu Y Z 2010 Optik 121 1243

[14] Philipps J F, Töpfer T, Ebendorff Heidepriem H, Ehrt D and Sauerbrey R 2001 Appl. Phys. B 72 399

[15] Li L, Li H, Qiu T, Temyanko V L, Morrell M M and Schülzgen A 2005 Opt. Express 13 3420

[16] Jeong Y, Baek S, Dupriez P, Maran J N, Sahu J K, Nilsson J and Lee B 2008 Opt. Express 16 19865

[17] Rohsenow W M and Hartnett J P 1998 Handbook of Heat Transfer (New York: McGraw Hill) p 78
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 024203
[2] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 024203
[3] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 024203
[4] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 024203
[5] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 024203
[6] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 024203
[7] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 024203
[8] LIU Hou-Kang,XUE Yu-Hao,LI Zhen,HE Bing**,ZHOU Jun**,DING Ya-Qian,JIAO Meng-Li,LIU Chi,QI Yun-Feng,WEI Yun-Rong,DONG Jing-Xing,LOU Qi-Hong. The Improved Power of the Central Lobe in the Beam Combination and High Power Output[J]. Chin. Phys. Lett., 2012, 29(4): 024203
[9] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 024203
[10] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 024203
[11] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 024203
[12] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 024203
[13] ZHAO Guang-Zhen, XIAO Xiao-Sheng, MEI Jia-Wei, YANG Chang-Xi. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(3): 024203
[14] ZHU Guo-Li, JU You-Lun, YAO Bao-Quan, WANG Yue-Zhu. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2012, 29(2): 024203
[15] YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. Chin. Phys. Lett., 2012, 29(2): 024203
Viewed
Full text


Abstract