Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020505    DOI: 10.1088/0256-307X/29/2/020505
GENERAL |
Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions
WANG Sha**, YU Yong-Guang
Department of Mathematics, Beijing Jiaotong University, Beijing 100044
Cite this article:   
YU Yong-Guang, WANG Sha 2012 Chin. Phys. Lett. 29 020505
Download: PDF(371KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generalized projective synchronization of different dimensional fractional order chaotic systems is investigated. According to the stability theory of linear fractional order systems, a sufficient condition to realize synchronization is obtained. The fractional order chaotic and hyperchaotic systems are applied to achieve synchronization in both reduced and increased dimensions. The corresponding numerical results coincide with theoretical analysis.
Keywords: 05.45.-a      05.45.Xt     
Received: 26 October 2011      Published: 11 March 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020505       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Yong-Guang
WANG Sha
[1] Kiani B A, Fallahi K, Pariz N and Leung H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 863
[2] Matignon D 1996 Computational Engineering in Systems Applications (France: Lille) 963
[3] Mohammad S T and Mohammad H 2008 Physica A 387 57
[4] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[5] Yu Y G and Li H X 2008 Physica A 387 1393
[6] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[7] Yu Y G and Li H X 2010 Nonlinear Anal. RWA 11 2456
[8] Miao Q Y, Fang J A, Tang Y and Dong A H 2009 Chin. Phys. Lett. 26 050501
[9] Vasegh N and Khellat F 2009 Chaos Solitons Fractals 42 1054
[10] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501
[11] Peng G J and Jiang Y L 2008 Phys. Lett. A 372 3963
[12] Peng G Y, Jiang Y L and Chen F 2008 Physica A 387 3738
[13] Chen L P, Chai Y and Wu R C 2011 Phys. Lett. A 375 2099
[14] Zhou P and Zhu W 2011 Nonlinear Anal. RWA 12 811
[15] Femat R and Alvarez Ramirez J 1997 Phys. Lett. A 236 307
[16] Terman D, Koppel N and Bose A 1998 Physica D 117 241
[17] Zhang G, Liu Z G and Ma Z J 2007 Chaos Solitons Fractals 32 773
[18] Miao Q Y, Fang J A, Tang Y and Dong A H 2009 Chin. Phys. Lett. 26 050501
[19] Wang S and Yu Y G 2010 Physica A 389 4981
[20] Wu X J, Li J and Chen G R 2008 J. Franklin Institute 345 392
[21] Hegazi A S and Matouk A E 2011 Appl. Math. Lett. 24 1938
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020505
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020505
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020505
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 020505
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 020505
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 020505
Viewed
Full text


Abstract