Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020504    DOI: 10.1088/0256-307X/29/2/020504
GENERAL |
Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water
REN Sheng, ZHANG Jia-Zhong**, LI Kai-Lun
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
ZHANG Jia-Zhong, REN Sheng, LI Kai-Lun 2012 Chin. Phys. Lett. 29 020504
Download: PDF(1397KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mechanisms for the evolution of a single spherical bubble subjected to sound excitation in water are studied from the viewpoint of nonlinear dynamics. First, the shooting method is combined with a Poincaré map to obtain the fixed point for the case of forced oscillation in volume. Then, the stabilities are judged by Floquet theory and the bifurcation theorem. Moreover, the transitions of bubble oscillation in volume due to sound excitation in water are explained from the viewpoint of nonlinear dynamics in detail. The results show that with an increase in sound frequency, the period-1 oscillation becomes unstable, and oscillation behaves in a double-periodic manner, then a quasi-periodic manner, and finally chaotically. Additionally, with an increase of the amplitude of the sound pressure, the bubble eventually oscillates with chaos via a series of period-doubling bifurcations.
Keywords: 05.45.-a      02.30.Oz     
Received: 19 November 2011      Published: 11 March 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Oz (Bifurcation theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020504       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jia-Zhong
REN Sheng
LI Kai-Lun
[1] Lauterborn W and Ohl C 1997 Ultrason. Sonochem. 4 65
[2] Lauterborn W, Kurz T, Geisler R, Schanz D and Lindau O 2007 Ultrason. Sonochem. 14 484
[3] Rayleigh L 1917 Philos. Mag. 34 94
[4] Plesset M and Prosperetti A 1977 Annu. Rev. Fluid. Mech. 9 145
[5] Keller J and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[6] Prosperetti A, Crum L and Commander K 1988 J. Acoust. Soc. Am. 83 502
[7] Feng Z C and Leal L G 1997 Annu. Rev. Fluid. Mech. 29 201
[8] Franc J P and Michel J M 2004 Fundamentals of Cavitation (Dordrecht: Kluwer Academic Publisher)
[9] Cunha F R, Sousa A J and Morais P C 2002 J. Magn. Magn. Mater. 252 271
[10] Zhu S L and Zhong P 1999 J. Acoust. Soc. Am. 106 3024
[11] Ji B, Luo X W, Zhang Y, Ran H J, Xu H Y and Wu Y L 2010 Chin. Phys. Lett. 27 096401
[12] Parlitz U, Englisch V, Scheffczyk C and Lauterborn W 1990 J. Acoust. Soc. Am. 88 1061
[13] Behnia S, Jafari A, Soltanpoor W and Jahanbakhsh O 2009 Chaos Solitons Fractals 41 818
[14] Behnia S, Sojahrood A J, Soltanpoor W and Jahanbakhsh O 2009 Ultrason. Sonochem. 16 502
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[7] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020504
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 020504
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020504
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 020504
[15] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 020504
Viewed
Full text


Abstract