Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020303    DOI: 10.1088/0256-307X/29/2/020303
GENERAL |
Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions
Hassanabadi Hassan1*, Yazarloo Bentol Hoda1, LU Liang-Liang2
1Department of Physics, Shahrood University of Technology, P.O. Box 3619995161-316 Shahrood, Iran
2Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006
Cite this article:   
Yazarloo Bentol Hoda, LU Liang-Liang, Hassanabadi Hassan 2012 Chin. Phys. Lett. 29 020303
Download: PDF(690KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Schrödinger equation for the generalized Pöschl–Teller potential with the centrifugal term is investigated approximately. The Nikiforov–Uvarov method is used in the calculations and the eigenfunctions as well as the energy eigenvalues obtained after a proper Pekeris-type approximation. Some useful expectation values and the oscillator strength are reported.
Keywords: 03.65.-w      03.65.Fd      03.65.Ge     
Received: 21 September 2011      Published: 11 March 2012
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020303       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yazarloo Bentol Hoda
LU Liang-Liang
Hassanabadi Hassan
[1] Schiff L I 1968 Quantum Mechanics 3rd edn (New York: McGraw Hill)
[2] Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-relativistic Theory 3rd edn (New York: Pergamon)
[3] Neito M M 1979 Am. J. Phys. 47 1067
[4] Erko S and Sever R 1984 Phys. Rev. D 30 2117
[5] Sage M L 1984 Chem. Phys. 87 431
Sage M and Goodisman J 1985 Am. J. Phys. 53 350
[6] Dong S H 2003 Appl. Math. Lett. 16 199
[7] Ikhdair S M and Sever R 2007 J. Mol. Struct. Theochem. 806 155
[8] Ikhdair S M and Sever R 2008 J. Mol. Struct. Theochem. 855 13
[9] Newton R Q 1982 Scattering Theory of Waves and Particles (New York: Springer)
[10] Simsek M and Yalcin Z 1994 J. Math. Chem. 16 211
[11] Aktas M and Sever R 2004 J. Mol. Struct. Theochem. 710 223
[12] Zuniga J, Alacid M, Requena A and Bastida A 1995 Int. J. Quantum Chem. 57 43
[13] Arias J M, Gomez Camacho J and Lemus R 2004 J. Phys. A: Math. Gen. 37 877
[14] Daz J I, Negro J, Nieto L M and Rosas Ortiz O 1999 J. Phys. A 32 8447
[15] Yesiltas O, Simsek M, Sever R and Tezcan C 2003 Phys. Scr. 67 472
[16] Boca M and Stroe M 1998 Rom. Rep. Phys. 55 184
[17] Znojil M 2000 Phys Lett. A 266 4
[18] Rocha R and Oliveira E 2005 Rev. Mex. Fis. 51 1
[19] Hassanabadi H, Zarrinkamar S and Rajabi A A 2011 Commun. Theor. Phys. 55 541
[20] Erko S and Sever R 1988 Phys. Rev. A 37 2687
[21] Bagchi B and Ganguly A 2003 J. Phys. A 36 161
[22] Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137
[23] Dong S and Dong S H 2002 Czech. J. Phys. 52 753
[24] Agboola D 2011 Pram. J. Phys. 76 875
[25] Odake S and Sasaki R 2011 J. Phys. A 44 195203
[26] Xu Y, He S and Jia C S 2010 Phys. Scr. 81 045001
[27] Wei G and Dong S H 2010 Eur. Phys. J. 43 185
[28] Chen T, Diao Y and Jia C S 2009 Phys. Scr. 79 065014
[29] Wei G and Dong S H 2009 Phys. Lett. A 373 2428
[30] Jia C S, Chen T and Cui L 2009 Phys. Lett. A 373 1621
[31] Dong S H, Qiang W and García Ravelo J 2008 Int. J. Mod. Phys. A 23 1537
[32] Yesiltas O 2007 Phys. Scr. 75 41
[33] Hasan Y and Tomak M 2005 Phys. Rev. B 72 115340
[34] Rodríuez A and CerveróJ 2006 Phys. Rev. B 74 104201
[35] Roy U et al 2009 Phys. Rev. A 80 052115
[36] Yildirim H and Tomak M 2006 J. Appl. Phys. 99 093103
[37] Xie W 2006 Commun. Theor. Phys. 46 1101
[38] Radovanović J et al 2000 Phys. Lett. A 269 179
[39] Mora Ramos M, Barseghyan M and Duque C A 2010 Physica E 43 338
[40] Oyewumi K J, Akinpelu F O and Agboola D 2008 Int. J. Theor. Phys. 47 1039
[41] Schrödinger E 1940 Proc. R. Irish Acad. A 46 183
[42] Gonul B and Zorba I 2000 Phys. Lett. A 269 83
[43] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[44] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
[45] Ikhdair S M and Sever R 2008 Ann. Phys. (Berlin) 17 897
[46] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhaauser)
[47] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[48] Agboola D 2010 Chin. Phys. Lett. 27 040301
[49] Barut A O, Inomata A and Wilson R 1987 J. Phys. A 20 4075
[50] Al Jaber S 1998 Int. J. Theor. Phys. 37 1289
[51] Chakraborty T and Pietilainen P 2005 Phys. Rev. Lett. 95 136603
[52] Mizel A, Shtrichman I and Gershoni D 2002 Phys. Rev. B 65 235313
[53] Lu L, Xie W and Hassanabadi H 2011 J. Lumin. 131 2538
[54] Mejri C, Chaouache M, Maaref M, Voisin P and Gerard J M 2006 Semicond. Sci. Technol. 21 1018
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[5] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 020303
[6] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 020303
[7] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 020303
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020303
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 020303
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 020303
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 020303
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020303
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 020303
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 020303
[15] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 020303
Viewed
Full text


Abstract