Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020302    DOI: 10.1088/0256-307X/29/2/020302
GENERAL |
Decoherence and Multipartite Entanglement of Non-Inertial Observers
M. Ramzan
Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
Cite this article:   
M. Ramzan 2012 Chin. Phys. Lett. 29 020302
Download: PDF(617KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The decoherence effect on multipartite entanglement in non-inertial frames is investigated. The GHZ state is considered to be shared between partners with one partner in the inertial frame whereas the other two are in accelerated frames. One-tangle and π−tangles are used to quantify the entanglement of the multipartite system influenced by phase damping and phase flip channels. It is seen that for the phase damping channel, entanglement sudden death (ESD) occurs for p>0.5 in the infinite acceleration limit. On the other hand, in the case of the phase flip channel, ESD behavior occurs at p=0.5. It is also seen that entanglement sudden birth (ESB) occurs in the case of phase flip channel just after ESD, i.e. p>0.5. Furthermore, it is seen that the effect of the environment on multipartite entanglement is much stronger than that of the acceleration of non-inertial frames.
Keywords: 03.67.Mn      03.65.Ud     
Received: 03 August 2011      Published: 11 March 2012
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Ramzan
[1] Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93
[2] Boschi D et al 1998 Phys. Rev. Lett. 80 1121
[3] Bouwmeester D 2000 The Physics of Quantum Information (Berlin: Springer)
[4] Preskill J 1998 Proc. Roy. Soc. London A 454 385
[5] Yonac M et al 2006 J. Phys. B : At. Mol. Opt. Phys. 39 S621
[6] Jakobczyk L and Jamroz A 2004 Phys. Lett. A 333 35
[7] Ann K and Jaeger G 2007 Phys. Rev. A 76 044101
[8] Jaeger G and Ann K 2007 J. Mod. Opt. 54 2327
[9] Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
[10] Yu T and Eberly J H 2007 Phys. Rev. Lett. 97 140403
[11] Augusiak R and Horodecki P 2009 Phys. Rev. A 80 042307
[12] Ramzan M and Khan M K 2008 Chin. Phys. Lett. 25 3543
[13] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[14] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Combridge: Combridge University)
[15] Kofler J and Brukner C 2007 Phys. Rev. Lett. 99 180403
[16] Alsing P M and Milburn G J 2003 Phys. Rev. Lett. 91 180404
[17] Fuentes Schuller I and Mann R B 2005 Phys. Rev. Lett. 95 120404
[18] Alsing P M et al 2006 Phys. Rev. A 74 032326
[19] Ralph T C et al 2009 Phys. Rev. A 79 022121
[20] Doukas J and Hollenberg L C L 2009 Phys. Rev. A 79 052109
[21] Moradi S 2009 Phys. Rev. A 79 064301
[22] Martn Martnez E and Len J 2009 Phys. Rev. A 80 042318
[23] Wang J et al 2010 Phys. Rev. A 81 052120
[24] Pan Q and Jing J 2008 Phys. Rev. A 77 024302
[25] Wang J et al 2010 Phys. Lett. B 692 202
[26] Montero M and Martin Martinez E 2011 J. High Energy Phys. 2011 6
[27] David E 2010 Phys. Rev. A 82 042332
[28] Wang J and Jing J 2010 Phys. Rev. A 82 032324
[29] Wang J and Jing J 2011 Phys. Rev. A 83 022314
[30] Hwang M R et al 2010 Phys. Rev. A 83 012111
[31] Zhang W and Jing J Preprint quant ph/1103.4903
[32] Ramzan M and Khan M K 2011 Quant. Inf. Process. (to be published)
[33] Aspachs M et al 2010 Phys. Rev. Lett. 105 151301
[34] Martn Martnez E et al 2010 Phys. Rev. D 82 064006
[35] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[36] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[37] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020302
[2] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020302
[3] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020302
[4] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020302
[5] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 020302
[6] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 020302
[7] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 020302
[8] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 020302
[9] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 020302
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 020302
[11] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 020302
[12] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 020302
[13] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 020302
[14] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 020302
[15] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 020302
Viewed
Full text


Abstract