Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 125201    DOI: 10.1088/0256-307X/29/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Temperature Characteristics of Cathode Sheath in High-Pressure Volume Discharge Derived from Emanating Shock Wave
YANG Chen-Guang, XU Yong-Yue, ZUO Du-Luo*
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 Institute of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
YANG Chen-Guang, XU Yong-Yue, ZUO Du-Luo 2012 Chin. Phys. Lett. 29 125201
Download: PDF(563KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The temperature characteristics of cathode sheath in high-pressure volume discharge are investigated experimentally. The cathode sheath temperatures under various discharge conditions are derived from the speeds of the emanating shock waves which are measured by a Mach–Zehnder interferometry. It is found that the cathode sheath temperature and the ratio ΔT3/ΔT1 of temperature rise between cathode sheath and plasma bulk are determined by the specific energy deposition and the breakdown delay time respectively. These results are helpful for discharge stability improving and shock wave reducing.
Received: 09 April 2012      Published: 04 March 2013
PACS:  52.80.Hc (Glow; corona)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/125201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/125201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Chen-Guang
XU Yong-Yue
ZUO Du-Luo
[1] Von Bergmann H M, Forbes A, Roberts T and Botha L R 2008 Opt. Eng. 47 084202
[2] Kalizaki K, Sasaki Y, Inoue T and Sakai Y 2006 Rev. Sci. Instrum. 77 5109
[3] Taylor R S 1986 Appl. Phys. B 41 1
[4] Cermak M, Bessieres D and Paillol J 2011 J. Appl. Phys. 110 053303
[5] Belasri A, Boeuf J P and Pitchford L C 1993 J. Appl. Phys. 74 1553
[6] Kosugi S, Maeno K and Honma H 1995 Proc. SPIE 2502 548
[7] Lamrous O and et al 2003 J. Phys. D 36 1873
[8] Schr?der G and Haferkamp J 1995 J. Appl. Phys. 78 4859
[9] Lück H, Loffhagen D and B?tticher W 1994 Appl. Phys. B 58 123
[10] Anderson J D 1990 Modern Compressible Flow (New York: McGraw-Hill)
Related articles from Frontiers Journals
[1] Wen-Zheng Liu, Shuai Zhao, Mao-Lin Chai, Jiang-Qi Niu. A Method of Using a Carbon Fiber Spiral-Contact Electrode to Achieve Atmospheric Pressure Glow Discharge in Air[J]. Chin. Phys. Lett., 2017, 34(8): 125201
[2] QIAN Mu-Yang, YANG Cong-Ying, CHEN Xiao-Chang, NI Geng-Song, LIU-Song, WANG De-Zhen. Modeling of the Distinctive Ground-State Atomic Oxygen Density Profile in Plasma Needle Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 125201
[3] Sharmin Sultana, Jichul Shin. Dynamic Characteristics of a Microhollow Cathode Sustained Discharge with Split Third Electrodes for Potential Flow Application to Flow Velocimetry[J]. Chin. Phys. Lett., 2014, 31(09): 125201
[4] FU Yang-Yang, LUO Hai-Yun, ZOU Xiao-Bing, WANG Xin-Xin. Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure[J]. Chin. Phys. Lett., 2014, 31(07): 125201
[5] YIN Peng-Fei, ZHANG Rong, LIU Qian, HU Jian-Chang, LI Yin-Bing, LI Ning. Preparation of Micropowder by a Combination of Jet-Milling and Electrostatic Dispersion[J]. Chin. Phys. Lett., 2013, 30(9): 125201
[6] DING Fang, ZHENG Shi-Jian, KE Bo, TANG Zhong-Liang, ZHANG Yi-Chuan, YANG Kuan, XIE Xin-Hua, ZHU Xiao-Dong. Self-Adjusting Characterization for Steady-State, Direct Current Cathode-Dominated Glow Discharge Plasmas at High Pressures[J]. Chin. Phys. Lett., 2013, 30(8): 125201
[7] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 125201
[8] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 125201
[9] LI Xue-Chen**, JIA Peng-Ying, ZHAO Na . Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure[J]. Chin. Phys. Lett., 2011, 28(4): 125201
[10] LI Shang, OUYANG Ji-Ting, HE Feng. Transition of Discharge Mode of a Local Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2010, 27(6): 125201
[11] QI Bing, HUANG Jian-Jun, ZHANG Zhe-Huang, WANG De-Zhen. Observation of Periodic Multiplication and Chaotic Phenomena in Atmospheric Cold Plasma Jets[J]. Chin. Phys. Lett., 2008, 25(9): 125201
[12] YU Qian, DENG Yong-Feng, LIU Yue, HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure[J]. Chin. Phys. Lett., 2008, 25(7): 125201
[13] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 125201
[14] LIU Xiu-Jun, CHEN Guang-Liang, CHEN Shi-Hua, QIAN Feng, FENG Ke-Cheng, YANG Si-Ze. Removal of NO Molecules by a Novel Atmospheric Pressure Plasma Apparatus[J]. Chin. Phys. Lett., 2006, 23(10): 125201
[15] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 125201
Viewed
Full text


Abstract