Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124205    DOI: 10.1088/0256-307X/29/12/124205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Terahertz Wave Confinement in Pillar Photonic Crystal with a Tapered Waveguide and a Point Defect
WANG Chang-Hui, KUANG Deng-Feng**, CHANG Sheng-Jiang**, LIN Lie
Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology of the Ministry of Education, Nankai University, Tianjin 300071
Cite this article:   
WANG Chang-Hui, KUANG Deng-Feng, CHANG Sheng-Jiang et al  2012 Chin. Phys. Lett. 29 124205
Download: PDF(628KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a photonic crystal cavity with a tapered waveguide and a point defect to highly confine terahertz waves. The terahertz wave is first guided into the tapered waveguide, gradually compressed to its end, and finally confined in the point defect cavity. Numerical simulations with the finite-difference time-domain method indicate that the narrow band terahertz wave is highly confined in the point defect cavity with a quality factor of 5323. The demonstrated device may be used as an antenna for enhancing light-matter interactions in the point defect cavity at terahertz frequencies and may improve the sensitivity of terahertz near-field microscopy.
Received: 06 September 2012      Published: 04 March 2013
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124205       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Chang-Hui
KUANG Deng-Feng
CHANG Sheng-Jiang
LIN Lie
[1] Noda S, Chutinan A and Imada M 2000 Nature 407 608
[2] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[3] Tanaka Y et al 2007 Nat. Mater. 6 862
[4] Upham J, Tanaka Y, Asano T and Noda S 2008 Opt. Express 16 21721
[5] Upham J et al 2011 Opt. Express 19 23377
[6] Baba T 2008 Nat. Photon. 2 465
[7] Mao X Y et al 2008 Chin. Phys. Lett. 25 4311
[8] Barclay P, Srinivasan K and Painter O 2005 Opt. Express 13 801
[9] Happ T D, Kamp M and Forchel A 2001 Opt. Lett. 26 1102
[10] Fang Y J, Chen Z and Wang Z L 2011 Chin. Phys. Lett. 28 054208
[11] Khoo E H et al 2006 Opt. Express 14 6035
[12] Bingham A L and Grischkowsky D 2008 Opt. Lett. 33 348
[13] Johnston M B 2007 Nat. Photon. 1 14
[14] Huber A J et al 2008 Nano Lett. 8 3766
[15] Zhan H, Mendis R and Mittleman D M 2010 Opt. Express 18 9643
[16] Kim S H, Lee E S, Ji Y B and Jeon T I 2010 Opt. Express 18 1289
[17] Grischkowsky D, Keiding S, Exter M van and Fattinger Ch 1990 J. Opt. Soc. Am. B 7 2006
[18] Ho K M, Chan K T and Soukoulis C M 1990 Phys. Rev. Lett. 65 3152
[19] Sakoda K 2005 Optical Properties of Photonic Crystals (Berlin: Springer)
[20] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers)
[21] Bingham A, Zhao Y G, Grischkowsky D 2005 Appl. Phys. Lett. 87 051101
[22] Cai X H et al 2005 Chin. Phys. 14 2507
Related articles from Frontiers Journals
[1] Qianju Song, Shiwei Dai, Dezhuan Han, Z. Q. Zhang, C. T. Chan, and Jian Zi. PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum[J]. Chin. Phys. Lett., 2021, 38(8): 124205
[2] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 124205
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 124205
[4] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 124205
[5] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 124205
[6] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 124205
[7] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 124205
[8] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 124205
[9] ZHOU Xing-Ping, SHU Jing. Three-Dimensional Photon Control in Membrane-Stack Photonic Crystals[J]. Chin. Phys. Lett., 2014, 31(2): 124205
[10] LIN Xu-Sheng, LIU Jing-Lin, ZHENG Yun-Bao, LAN Sheng. Modulation of Junction Defects Created by Crossing Photonic Crystal Waveguides[J]. Chin. Phys. Lett., 2014, 31(1): 124205
[11] LI Jia-Qi, DONG Zheng-Gao, QIU Teng, ZHAI Ya. Low-Threshold Surface Plasmon Lasing using the Band Edge Mode in a Bi-Periodic Groove Array[J]. Chin. Phys. Lett., 2013, 30(8): 124205
[12] LI Qing-Bo, WU Rui-Xin, YANG Yan, SUN Hui-Ling. Modeling 2D Gyromagnetic Photonic Crystals by Modified FDTD Method[J]. Chin. Phys. Lett., 2013, 30(7): 124205
[13] CHEN Shou-Xiang, YANG Xiu-Lun, MENG Xiang-Feng, DONG Guo-Yan, WANG Yu-Rong, WANG Lin-Hui, HUANG Zhe . Improvement of the Focusing Resolution of Photonic Crystal Negative Refraction Imaging with a Hollow Component Structure[J]. Chin. Phys. Lett., 2013, 30(5): 124205
[14] SONG Dong-Mo, TANG Zhi-Xiang, ZHAO Lei, SUI Zhan, WEN Shuang-Chun, FAN Dian-Yuan. Experimental Demonstration of a Low-Pass Spatial Filter Based on a One-Dimensional Photonic Crystal with a Defect Layer[J]. Chin. Phys. Lett., 2013, 30(4): 124205
[15] HAN Li-Li, ZHANG Xiao-Jun, LIU Cheng-Zhi, FAN Cun-Bo, HAN Xing-Wei, WU Jin-Hui, GAO Jin-Yue. Controlled Photonic Stop Bands in a Four-Level Atomic System of an Inhomogeneously Broad-End Solid[J]. Chin. Phys. Lett., 2013, 30(3): 124205
Viewed
Full text


Abstract