Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120503    DOI: 10.1088/0256-307X/29/12/120503
GENERAL |
Nonlocal Symmetry of the Lax Equation Related to Riccati-Type Pseudopotential
WANG Yun-Hu, CHEN Yong**, XIN Xiang-Peng
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
WANG Yun-Hu, CHEN Yong, XIN Xiang-Peng 2012 Chin. Phys. Lett. 29 120503
Download: PDF(403KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the Lax equation that can be employed to describe motions of long waves in shallow water under gravity. A nonlocal symmetry of this equation is given and used to find exact solutions and derive lower integrable models from higher ones. It is interesting that this nonlocal symmetry links with its corresponding Riccati-type pseudopotential. By introducing suitable and simple auxiliary dependent variables, the nonlocal symmetry is localized and used to generate new solutions from trivial solutions. Meanwhile, this equation is reduced to an ordinary differential equation by means of this nonlocal symmetry and some local symmetries.
Received: 04 September 2012      Published: 04 March 2013
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120503       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yun-Hu
CHEN Yong
XIN Xiang-Peng
[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press)
[2] Miura R M 1982 B?cklund Transformation (Berlin: Springer-Verlag)
[3] Rogers C and Shadwick W F 1982 B?cklund Transformations and Their Applications (London: Academic Press)
[4] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag)
[5] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformation Soliton Theory Its Geometric Application 2nd edn (Shanghai: Shanghai Science and Technology Press) (in Chinese)
[6] Cao C W and Zhang G Y 2012 Chin. Phys. Lett. 29 050202
[7] Xue B and Wang X 2012 Chin. Phys. Lett. 29 100201
[8] Hirota R 2004 Direct Method Soliton Theory 1st edn (New York: Cambridge University Press)
[9] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer-Verlag)
[10] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer-Verlag)
[11] Xin X P, Liu X Q and Zhang L L 2011 Chin. Phys. Lett. 28 020201
[12] Hu H W and Yu J 2012 Chin. Phys. B 21 020202
[13] Liu Y Q, Chen D Y and Hu C 2012 Chin. Phys. Lett. 29 080202
[14] Kang J and Qu C Z 2012 Chin. Phys. Lett. 29 070301
[15] Lou S Y 1993 Phys. Lett. B 302 261
[16] Lou S Y and Chen W Z 1993 Phys. Lett. A 179 271
[17] Lou S Y 1993 Phys. Lett. A 181 13
[18] Lou S Y 1994 J. Math. Phys. 35 2390
[19] Lou S Y 1993 Phys. Lett. A 175 23
[20] Lou S Y, Ruan H Y, Chen W Z, Wang Z L and Chen L L 1994 Chin. Phys. Lett. 11 593
[21] Han P and Lou S Y 1997 Acta Phys. Sin. 46 1249 (in Chinese)
[22] Lou S Y 1997 J. Phys. A 30 4803
[23] Lou S Y and Hu X B 1997 J. Phys. A 30 L95
[24] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[25] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A 45 155209
[26] Wazwaz A M 2009 Partial Differential Equations and Solitary Waves Theory (Beijing: Higher Education Press)
[27] Nucci M C 1988 J. Phys. A 21 73
[28] Nucci M C 1988 Int. J. Non-Linear Mech. 23 361
[29] Yang Y Q and Chen Y 2011 Commun. Theor. Phys. 55 25
[30] Fuchssteiner B and Oevel W 1982 J. Math. Phys. 23 358
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 120503
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 120503
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 120503
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 120503
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 120503
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 120503
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 120503
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 120503
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120503
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120503
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120503
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 120503
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 120503
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 120503
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 120503
Viewed
Full text


Abstract