Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120202    DOI: 10.1088/0256-307X/29/12/120202
GENERAL |
Wave Interaction and Resonance in a Non-Ideal Gas
Rajan Arora, Mohd. Junaid Siddiqui**, V. P. Singh
Department of Applied Science and Engineering, IIT Roorkee, Saharanpur Campus, Saharanpur, UP-247001, India
Cite this article:   
Rajan Arora, Mohd. Junaid Siddiqui, V. P. Singh 2012 Chin. Phys. Lett. 29 120202
Download: PDF(388KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The method of multiple time scales is used to obtain the asymptotic solutions to the planar and non-planar flows into a non-ideal gas. The transport equations for the amplitudes of resonantly interacting high frequency waves are also found. Furthermore, the evolutionary behavior of non-resonant wave modes culminating into shock waves is studied.
Received: 17 August 2012      Published: 04 March 2013
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  04.25.-g (Approximation methods; equations of motion)  
  04.30.Nk (Wave propagation and interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rajan Arora
Mohd. Junaid Siddiqui
V. P. Singh
[1] Blythe P A 1969 J. Fluid Mech. 37 31
[2] Ockendon H and Spence D A 1969 J. Fluid Mech. 39 329
[3] Chu B T 1970 Weak Nonlinear Waves in Nonequilibrium Flow in Nonequilibrium Flows ed Wegener P P (New York: Marcel Dekker) vol I part II
[4] Parker D F 1972 Phys. Fluids 15 256
[5] Becker E 1972 Ann. Rev. Fluid Mech. 4 155
[6] Clarke J F and McChesney A 1976 Dynamics of Relaxing Gases (London: Butterworth)
[7] Clarke J F 1984 Ann. Phys. France 9 211
[8] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[9] Sharma V D 2010 Quasilinear Hyperbolic Systems, Compressible Flows and Waves (Boca Raton: Chapman & Hall CRC) Press
[10] He Y and Moodie T B 1993 Stud. Appl. Math. 88 241
[11] He Y and Moodie T B 1995 Appl. Anal. 57 145
[12] Sharma V D and Srinivasan G K 2005 Int. J. Non-linear Mech. 40 1031
[13] Arora R et al 2009 Shock Waves 19 145
[14] Arora R 2009 J. Math. Model. Anal. 14 423
[15] Choquet-Bruhat V 1969 J. Math. Pure Appl. 48 119
[16] Germain P 1971 Progressive Waves 14th Prandtl Memorial Lecture (Jarbuch der DGLR) p 11
[17] Hunter J K and Keller J 1983 Commun. Pure Appl. Math. 36 547
[18] Majda A and Rosales R 1984 Stud. Appl. Math. 71 149
[19] Hunter J K et al 1986 Stud. Appl. Math. 75 187
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 120202
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 120202
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 120202
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 120202
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 120202
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 120202
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 120202
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 120202
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 120202
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 120202
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 120202
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 120202
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 120202
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 120202
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 120202
Viewed
Full text


Abstract