Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 108102    DOI: 10.1088/0256-307X/29/10/108102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effects of WO3 Particle Size in WO3/Epoxy Resin Radiation Shielding Material
DONG Yu, CHANG Shu-Quan**, ZHANG Hong-Xu, REN Chao, KANG Bin, DAI Ming-Zhu, DAI Yao-Dong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article:   
DONG Yu, CHANG Shu-Quan, ZHANG Hong-Xu et al  2012 Chin. Phys. Lett. 29 108102
Download: PDF(667KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To verify the influence of the functional elements particular size for the radiation attenuation coefficients and mechanical properties radiation shielding material based on epoxy resin, we prepare two WO3/E44 samples with different particular sizes of WO3 by a solidified forming approach. The linear attenuation coefficients of these samples are measured for γ-ray photo energies of 59.6, 121.8, and 344.1 keV, etc. using narrow beam transmission geometry. It is found that the linear attenuation coefficients would increase with the decreasing particle size of the WO3 in the epoxy resin based radiation shielding material. The theoretical values of the linear attenuation coefficients and mass attenuation are calculated using WinXcom, and good agreements between the experimental data and the theoretical values are observed. From the studies of the obtained results, it is reported that from the shielding point of view the nano-WO3 is more effective than micro-WO3 in the epoxy resin based radiation shielding material.
Received: 11 May 2012      Published: 01 October 2012
PACS:  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
  21.60.Ka (Monte Carlo models)  
  23.90.+w (Other topics in radioactive decay and in-beam spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/108102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/108102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Yu
CHANG Shu-Quan
ZHANG Hong-Xu
REN Chao
KANG Bin
DAI Ming-Zhu
DAI Yao-Dong
[1] Adams J H, Hathaway D H and Watts R N 2005 Revolutionary Concepts of Radiation Shielding for Human Exploration of Space NASA/TM-2005-213688
[2] Xu S Q, Bourham M and Rabiei A 2010 Mater. Des. 31 2140
[3] Hayashi T, Tobita K and Nakamori Y J 2009 J. Nucl. Mater. 386 119
[4] Li M M, Long Y Z, Zhang Z M et al 2011 Chin. Phys. B 20 048101
[5] John W C, Joseph G S and Jeffrey H 2009 Structural/Radiation-Shielding Epoxies NASA Tech Briefs LAR-16874-1
[6] Yin H X, Li M M, Yang H et al 2010 Chin. Phys. B 19 088105
[7] Abdo A E S, El-Sarraf M A and Gaber F A 2003 Ann. Nucl. Energy 30 175
[8] Kamoshida M, Oda M and Nishi T 2004 US Patent 6797972
[9] Morioka A, Sakurai S and Okuno K 2007 J. Nucl. Mater. 367 1085
[10] Demeo R and Benedetto M 2001 US Patent 6281515
[11] Jaewoo K, Young R U and Byungchul L 2010 US Patent 20100102279
Related articles from Frontiers Journals
[1] Shahryar Malekie, Nahid Hajiloo. Comparative Study of Micro and Nano Size WO$_{3}$/E44 Epoxy Composite as Gamma Radiation Shielding Using MCNP and Experiment[J]. Chin. Phys. Lett., 2017, 34(10): 108102
[2] ZHOU Wei, LV Zhi-Hui, WANG Ya-Rui, LIU Ran, CHEN Wei-Ye, LI Xiao-Tong. Acoustic Response and Micro-Damage Mechanism of Fiber Composite Materials under Mode-II Delamination[J]. Chin. Phys. Lett., 2015, 32(4): 108102
[3] LIU Yuan, LIU Xiang-Xuan, WANG Xuan-Jun, WEN Wu. Electromagnetic and Microwave Absorption Properties of Fe Coating on SiC with Metal Organic Chemical Vapor Reaction[J]. Chin. Phys. Lett., 2014, 31(04): 108102
[4] Suneetha Sebastian, Ajina C, C. P. G Vallabhan, V. P. N. Nampoori, P. Radhakrishnan, M. Kailasnath. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber[J]. Chin. Phys. Lett., 2013, 30(11): 108102
[5] LI Jian, RONG Ji-Li, ZHANG Yu-Ning, XU Tian-Fu, LI Bin. The Material Behavior and Fracture Mechanism of a Frangible Bullet Composite[J]. Chin. Phys. Lett., 2013, 30(7): 108102
[6] RONG Ji-Li, WANG Dan, WANG Xi, LI Jian, XU Tian-Fu, LU Ming-Ming, CAO Mao-Sheng. Dynamic Mechanical Behavior and Failure Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Whiskers[J]. Chin. Phys. Lett., 2013, 30(1): 108102
[7] CHENG Ting-Hai**, GAO Han, BAO Gang . Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple[J]. Chin. Phys. Lett., 2011, 28(12): 108102
[8] XUE Feng, YONG Hua-Dong, ZHOU You-He** . Bifurcation of a Swelling Gel with a Mechanical Load and Geometric Constraint[J]. Chin. Phys. Lett., 2011, 28(11): 108102
[9] TANG Cheng-Chun, CHEN Jun-Chi, LONG Yun-Ze**, YIN Hong-Xing, SUN Bin, ZHANG Hong-Di . Preparation of Curled Microfibers by Electrospinning with Tip Collector[J]. Chin. Phys. Lett., 2011, 28(5): 108102
[10] RONG Ji-Li, WANG Xi, CAO Mao-Sheng, XU Tian-Fu. Dynamic Fracture Toughness and Failure Mechanisms of ZnO Whiskers Secondary Reinforced Composites[J]. Chin. Phys. Lett., 2010, 27(8): 108102
[11] RONG Ji-Li, WANG Xi, CAO Mao-Sheng, WANG Da-Wei, ZHOU Wei, XU Tian-Fu. Dynamic Tensile Behavior and Fracture Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Nanowhiskers[J]. Chin. Phys. Lett., 2010, 27(6): 108102
[12] LONG Yun-Ze. Reply to ``Comment on `Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires'''[J]. Chin. Phys. Lett., 2009, 26(5): 108102
[13] TONG Ke-Qin, XU Chun-Xian, WANG Qiong, GU Bao-Xiang, ZHENG Ke, YELi-Hua, LI Xin-Song. Photoluminescence of Electrospun Poly-Methyl-Methacrylate:Alq3 Composite Fibres[J]. Chin. Phys. Lett., 2008, 25(12): 108102
[14] LONG Yun-Ze, DUVAIL Jean-Luc, CHEN Zhao-Jia, JIN Ai-Zi, GU Chang-Zhi. Electrical Conductivity and Current--Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires[J]. Chin. Phys. Lett., 2008, 25(9): 108102
[15] TAN Jin-Shan, LONG Yun-Ze, LI Meng-Meng. Preparation of Aligned Polymer Micro/Nanofibres by Electrospinning[J]. Chin. Phys. Lett., 2008, 25(8): 108102
Viewed
Full text


Abstract