Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107301    DOI: 10.1088/0256-307X/29/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structures of InGaN2 Nanotubes
YANG Mao1, SHI Jun-Jie1**, MEI Wei-Ning2, WANG Lu2, ZHANG Min3
1State Key Laboratory for Mesoscopic Physics, and Department of Physics, Peking University, Beijing 100871
2Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182-0266, USA
3College of Physics and Electron Information, Inner Mongolia Normal University, Hohhot 010022
Cite this article:   
YANG Mao, SHI Jun-Jie, MEI Wei-Ning et al  2012 Chin. Phys. Lett. 29 107301
Download: PDF(1122KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electronic structures of InGaN2 nanotubes (NTs) using first-principles calculations. It is found that all four types of InGaN2 NTs, with the same diameter, have similar stability. The total energy of the per unit InGaN2 NT depends on its diameter due to the curvature effect. The zigzag (armchair) InGaN2 NTs have direct (indirect) band gaps. The band gap increases for all of the InGaN2 NTs when their diameters increase. The valence band maximum (VBM) states of the InGaN2 NTs are p-like states localised around N atoms. The p-like VBM states in zigzag (armchair) InGaN2 NTs are perpendicular (parallel) to the tube axis.
Received: 27 April 2012      Published: 01 October 2012
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.61.Ey (III-V semiconductors)  
  73.63.Fg (Nanotubes)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Mao
SHI Jun-Jie
MEI Wei-Ning
WANG Lu
ZHANG Min
[1] Iijima S 1991 Nature 354 56
[2] Charlier J C, Blase X and Roche S 2007 Rev. Mod. Phys. 79 677
[3] Chopra N G et al 1995 Science 269 966
[4] Pan H, Feng Y P and Lin J 2006 Phys. Rev. B 74 045409
[5] Zhao M, Xia Y, Zhang D and Mei L 2003 Phys. Rev. B 68 235415
[6] Szabó A and Gali A 2009 Phys. Rev. B 80 075425
[7] Goldberger J et al 2003 Nature 422 599
[8] Yilmaz H, Weiner B R and Morell G 2010 Phys. Rev. B 81 041312
[9] Wu J 2009 J. Appl. Phys. 106 011101
[10] Chen X et al 2008 Phys. Status Solidi A 205 1103
[11] Neufeld C J et al 2008 Appl. Phys. Lett. 93 143502
[12] Kuykendall T et al 2007 Nat. Mater. 6 951
[13] Cai X M et al 2006 Nanotechnology 17 2330
[14] Amann M C et al 2009 New J. Phys. 11 125012
[15] Hamdani F et al 1998 J. Appl. Phys. 83 983
[16] Kim H M et al 2004 Nano Lett. 4 1059
[17] Chen P et al 2007 Adv. Mater. 19 1707
[18] Pan H, Feng Y P and Lin J 2008 J. Chem. Theory Comput. 4 703
[19] Pan H, Feng Y P and Lin J Y 2006 Phys. Rev. B 73 035420
[20] Shi J J et al 2011 Acta Mater. 59 2773
[21] Zhang S et al 2010 Phys. Lett. A 374 4767
[22] Zhu S G et al 2011 Appl. Phys. B 104 105
[23] Yang M, Shi J J and Zhang M 2010 J. Phys. Chem. C 114 21943
[24] Soler J M et al 2002 J. Phys.: Condens. Matter 14 2745
[25] Wang Z et al 2010 J. Appl. Phys. 108 044305
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[28] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[29] Artacho E et al 1999 Phys. Status Solidi B 215 809
[30] Guo Y, Yan X and Yang Y 2009 Phys. Lett. A 373 367
[31] Chen L J 2006 Chin. Phys. 15 798
[32] Qian Z et al 2005 Physica E 30 81
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 107301
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 107301
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 107301
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 107301
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 107301
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 107301
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 107301
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 107301
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 107301
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 107301
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 107301
[12] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 107301
[13] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 107301
[14] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 107301
[15] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 107301
Viewed
Full text


Abstract