Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 106202    DOI: 10.1088/0256-307X/29/10/106202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Creep Damage Evaluation of Titanium Alloy Using Nonlinear Ultrasonic Lamb Waves
XIANG Yan-Xun1, DENG Ming-Xi2, XUAN Fu-Zhen1**, CHEN Hu3, CHEN Ding-Yue3
1Key Laboratory of Pressure Systems and Safety (MOE), and School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237
2Department of Physics, Logistics Engineering University, Chongqing 400016
3Ningbo Special Equipment Inspection and Research Institute, Ningbo 315020
Cite this article:   
XIANG Yan-Xun, DENG Ming-Xi, XUAN Fu-Zhen et al  2012 Chin. Phys. Lett. 29 106202
Download: PDF(2493KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The creep damage in high temperature resistant titanium alloys Ti60 is measured using the nonlinear effect of an ultrasonic Lamb wave. The results show that the normalised acoustic nonlinearity of a Lamb wave exhibits a variation of the "increase-decrease" tendency as a function of the creep damage. The influence of microstructure evolution on the nonlinear Lamb wave propagation has been analyzed based on metallographic studies, which reveal that the normalised acoustic nonlinearity increases due to a rising of the precipitation volume fraction and the dislocation density in the early stage, and it decreases as a combined result of dislocation change and micro-void initiation in the material. The nonlinear Lamb wave exhibits the potential for the assessment of the remaining creep life in metals.
Received: 09 May 2012      Published: 01 October 2012
PACS:  62.20.-x (Mechanical properties of solids)  
  43.25.+y (Nonlinear acoustics)  
  81.70.Cv (Nondestructive testing: ultrasonic testing, photoacoustic testing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/106202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/106202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIANG Yan-Xun
DENG Ming-Xi
XUAN Fu-Zhen
CHEN Hu
CHEN Ding-Yue
[1] Cantrell J H and Yost W T 2001 Int. J. Fatigue 23 487
[2] Metya A, Ghosh M, Parida N and Sagar P S 2008 NDTE Int. 41 484
[3] Xiang Y X, Xuan F Z and Deng M X 2010 Chin. Phys. Lett. 27 016202
[4] Kim C S and Lissenden C J 2009 Chin. Phys. Lett. 26 086107
[5] Deng M X and Pei J F 2007 Appl. Phys. Lett. 90 121902
[6] Pruell C, Kim J Y, Qu J and Jacobs L J 2007 Appl. Phys. Lett. 91 231911
[7] Xiang Y X, Deng M X, Xuan F Z and Liu C J 2011 NDTE Int. 44 768
[8] Xiang Y X, Deng M X, Xuan F Z and Liu C J 2011 Ultrasonics 51 974
[9] Deng M X 1999 J. Appl. Phys. 85 3051
[10] Deng M X 2003 J. Appl. Phys. 94 4152
[11] Xiang Y X, Deng M X and Xuan F Z 2009 J. Appl. Phys. 106 024902
[12] Cantrell J H and Yost W T 1997 J. Appl. Phys. 81 2957
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 106202
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 106202
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 106202
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 106202
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 106202
[6] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 106202
[7] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 106202
[8] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 106202
[9] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 106202
[10] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 106202
[11] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 106202
[12] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 106202
[13] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 106202
[14] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 106202
[15] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 106202
Viewed
Full text


Abstract