Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 105201    DOI: 10.1088/0256-307X/29/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Suprathermality Effects on Propagation Properties of Ion Acoustic Waves
Mehran Shahmansouri*
Department of Physics, Faculty of Science, Arak University, Arak, P.O. Box 38156-8-8349, Iran
Cite this article:   
Mehran Shahmansouri 2012 Chin. Phys. Lett. 29 105201
Download: PDF(439KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical investigation is carried out to understand the basic features of ion-acoustic (IA) waves in an unmagnetised plasmas including cool ions, hot ions having a kappa distribution and kappa-distributed electrons, using small amplitude techniques. The effects of excess suprathermal ions, the ion temperature Ti and electron temperature Te as well as the density ratio on the IA waves are studied. It is found that the suprathermality effects play an important role in the system, as the geometric characteristics of the IA solitons are found to be significantly affected through the ion and electron suprathermal index. In the presence of suprathermality effects, either polarity is in principle supported by this plasma model.
Received: 13 April 2012      Published: 01 October 2012
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Sb (Solitons; BGK modes)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/105201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mehran Shahmansouri
[1] Bharuthram R and Shukla P K 1986 Phys. Fluids 20 3214
[2] Nakamura Y 1982 IEEE Trans. Plasma Sci. 7 232
[3] Tribeche M, Amour R and Shukla P K 2012 Phys. Rev. E 85 037401
[4] Ikezi H, Taylor R and Baker D 1970 Phys. Rev. Lett. 25 11
[5] Stix T H 1992 Waves in Plasmas (New York: AIP)
[6] Koepke M E 2002 Phys. Plasmas 9 2420
[7] Cranmer S R, Ballegooijen A A and Edgar R J 2007 Astrophys. J. 171 520
[8] Prudskikh V V 2010 Plasma Phys. Rep. 36 993
[9] Shukla P K and Stenflo L 1993 Astrophys. Space Sci. 209 323
[10] Zhou Q H, Jiang B, Shi X H and Li J Q 2009 Chin. Phys. Lett. 26 025201
[11] Baluku T K, Hellberg M A, Kourakis I and Saini N S 2010 Phys. Plasmas 17 053702
[12] Shahmansouri M and Tribeche M 2012 Astrophys. Space Sci. (in press)
[13] El-Awady E I, El-Tantawy S A, Moslem W M and Shukla P K 2010 Phys. Lett. A 374 3216
[14] Shah A and Saeed R 2011 Plasma Phys. Control. Fusion 53 095006
[15] Sahu B 2011 Phys. Plasmas 18 062308
[16] Sultana S, Kourakis I, Saini N S and Helberg M A 2010 Phys. Plasmas 17 032310
[17] Alinejad H and Mamun A A 2011 Phys. Plasmas 18 112103
[18] Hussain S, Akhtar N and Mahmood S 2011 Astrophys. Space. Sci.
[19] Baluku T K and Hellberg M A 2012 Phys. Plasmas 19 012106
[20] Tribeche M, Mayout S and Amour R 2009 Phys. Plasmas 16 043706
[21] Baluku T K and Hellberg M A 2008 Phys. Plasmas 15 123705
[22] Mace R L, Baboolal S, Bharuthram R and Hellberg M A 1991 J. Plasma Phys. 45 323
Related articles from Frontiers Journals
[1] Shou-Zhi Jiang, Xue-Ni Hou, Jie Kong, Lorin S. Matthews, Truell W. Hyde, Feng Huang, Min-Juan Wang. Particle Growth in an Experimental Dusty Plasma System[J]. Chin. Phys. Lett., 2018, 35(12): 105201
[2] Rang-Yue Zhang, Yan-Hong Liu, Feng Huang, Zhao-Yang Chen, Chun-Yan Li. Effect of Particle Number Density on Wave Dispersion in a Two-Dimensional Yukawa System[J]. Chin. Phys. Lett., 2017, 34(7): 105201
[3] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 105201
[4] You-Mei Wang, Qi Chen, Ming-Young Yu. Self-Organization of Charged Particulates in the Presence of External Force[J]. Chin. Phys. Lett., 2017, 34(3): 105201
[5] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 105201
[6] Jie Zhang, Xin Qi, Heng Zhang, Wen-Shan Duan. Particle-in-Cell Simulation of the Reflection of a Korteweg–de Vries Solitary Wave and an Envelope Solitary Wave at a Solid Boundary[J]. Chin. Phys. Lett., 2016, 33(06): 105201
[7] M. R. Hossen, S. A. Ema, A. A. Mamun. Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids[J]. Chin. Phys. Lett., 2016, 33(06): 105201
[8] Zi-Juan Xie, Yu Sui, Yi Wang, Xian-Jie Wang, Yang Wang, Zhi-Guo Liu, Bing-Sheng Li, Yu Bai, Zhi-Hao Wang. Modulation of Void Motion Behavior in a Magnetized Dusty Plasma[J]. Chin. Phys. Lett., 2016, 33(01): 105201
[9] HUANG Feng, LIU Yan-Hong, CHEN Zhao-Yang, WANG Long, YE Mao-Fu. Cluster Rotation in an Unmagnetized Dusty Plasma[J]. Chin. Phys. Lett., 2013, 30(11): 105201
[10] B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2012, 29(7): 105201
[11] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 105201
[12] B. Farokhi, A. Hameditabar. Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations[J]. Chin. Phys. Lett., 2012, 29(2): 105201
[13] WU Jing, **, ZHANG Peng-Yun, SUN Ji-Zhong, YAO Lie-Ming, DUAN Xu-Ru . Dust Particle Density and Charges in Radio-Frequency Mixture Discharge Plasma[J]. Chin. Phys. Lett., 2011, 28(9): 105201
[14] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 105201
[15] HUANG Feng**, LIU Yan-Hong, YE Mao-Fu, WANG Xue-Jin, WANG Long . Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas[J]. Chin. Phys. Lett., 2010, 27(11): 105201
Viewed
Full text


Abstract