Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104706    DOI: 10.1088/0256-307X/29/10/104706
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Comparative Study of the Large Eddy Simulations with the Lattice Boltzmann Method Using the Wall-Adapting Local Eddy-Viscosity and Vreman Subgrid Scale Models
LIU Ming1, CHEN Xiao-Peng1**, Kannan N. Premnath2
1School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072
2Department of Mechanical Engineering, University of Colorado Denver, Denver 80217-3364, USA
Cite this article:   
LIU Ming, CHEN Xiao-Peng, Kannan N. Premnath 2012 Chin. Phys. Lett. 29 104706
Download: PDF(728KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The wall-adapting local eddy-viscosity (WALE) and Vreman subgrid scale models for large eddy simulations are compared within the framework of a generalised lattice Boltzmann method. Fully developed turbulent flows near a flat wall are simulated with the two models for the shear (or friction) Reynolds number of 183.6. Compared to the direct numerical simulation (DNS), damped eddy viscosity in the vicinity of the wall and a correct velocity profile in the transitional region are achieved by both the models without dynamic procedures. The turbulent statistics, including, e.g., root-mean-square velocity fluctuations, also agree well with the DNS results. The comparison also shows that the WALE model predicts excellent damped eddy viscosity near the wall.
Received: 24 April 2012      Published: 01 October 2012
PACS:  47.11.Qr (Lattice gas)  
  47.27.N-  
  02.60.-x (Numerical approximation and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104706       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104706
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ming
CHEN Xiao-Peng
Kannan N. Premnath
[1] Chen S Y and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[2] Frisch U, d'Hummieres D, Hasslacher B, Lallemand P, Pomeau Y and Rivet J P 1987 Complex Syst. 1 649
[3] Junk M, Klar A and Luo L S 2005 J. Comput. Phys. 210 676
[4] Hou S, Sterling J D, Chen S and Doolen G D 1996 Fields Inst. Commun. 6 151
[5] Krafczyk M, T?lke J and Luo L S 2003 Int. J. Mod. Phys. B 17 33
[6] d'Humieres D 1992 Prog. Astron. Aero. 159 450
[7] Lallemand P and Luo L S 2000 Phys. Rev. E 61 6546
[8] d'Humieres D 2002 Philos. Trans. R. Soc. A 360 437
[9] Chai Z H, Shi B C and Zheng L 2006 Chin. Phys. 15 1855
[10] Germano M, Piomelli U, Moin P and Cabot W H 1991 Phys. Fluids 3 1761
[11] Lilly D K 1992 Phys. Fluids 4 633
[12] Premnath K N, Pattison M J and Banerjee S 2009 Phys. Rev. E 79 026703
[13] Premnath K N, PattisonM J and Banerjee S 2009 Physica A 388 2640
[14] Jafari S and Rahnama M 2011 Int. J. Numer. Methods Fluids 67 700
[15] Nicoud F and Ducros F 1999 Flow. Turb. Combust. 62 183
[16] Vreman A W 2004 Phys. Fluids 16 3670
[17] Weickert M, Teike G, Schmidt O and Sommerfeld M 2010 Comput. Math. Appl. 59 2200
[18] Premnath K N and Abraham J 2007 J. Comput. Phys. 224 539
[19] He X, Shan X and Doolen G D 1998 Phys. Rev. E 57 R13
[20] Lam K 1989 PhD Thesis (University of California, Santa Barbara, CA)
[21] Moin P and Mahesh K 1998 Annu. Rev. Fluid Mech. 30 539
[22] Pop S 2000 Turb. Flow (New York: Cambridge University Press)
[23] Mei R, Luo L S, Lallemand P and d'Humieres D 2006 Comput. Fluids 35 855
[24] Kim J, Moin P and Moser R J 1987 J. Fluid Mech. 177 133
[25] Kreplin H and Eckelmann H 1979 Phys. Fluids 22 1233
[26] You D and Moin P 2007 Phys. Fluids 19 065110
[27] Nicoud F, Toda H B, Cabrit O, Bose S and Lee J 2011 Phys. Fluids 23 085106
Related articles from Frontiers Journals
[1] WANG Zheng-Dao, YANG Jian-Fei, WEI Yi-Kun, QIAN Yue-Hong. A New Extrapolation Treatment for Boundary Conditions in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2013, 30(9): 104706
[2] WEN Bing-Hai, CHEN Yan-Yan, ZHANG Ren-Liang, ZHANG Chao-Ying, FANG Hai-Ping . Lateral Migration and Nonuniform Rotation of Biconcave Particle Suspended in Poiseuille Flow[J]. Chin. Phys. Lett., 2013, 30(6): 104706
[3] NIE De-Ming, LIN Jian-Zhong, . Characteristics of Flow around an Impulsively Rotating Square Cylinder via LB-DF/FD Method[J]. Chin. Phys. Lett., 2010, 27(10): 104706
[4] GUO Xiao-Hui, LIN Jian-Zhong, NIE De-Ming. Vortex Structures and Behavior of a Flow Past Two Rotating Circular Cylinders Arranged Side-by-Side[J]. Chin. Phys. Lett., 2009, 26(8): 104706
[5] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 104706
[6] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 104706
[7] KIM Dehee, KIM Hyung Min, JHON Myung S., VINAY III Stephen J., BUCHANAN John. A Characteristic Non-Reflecting Boundary Treatment in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(6): 104706
[8] RAN Zheng. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation[J]. Chin. Phys. Lett., 2007, 24(12): 104706
Viewed
Full text


Abstract