Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104304    DOI: 10.1088/0256-307X/29/10/104304
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Leaky Interface Wave Measurement at a Solid-Solid Interface with Laser Ultrasonics
WANG Hao1, HAN Qing-Bang2** QIAN Meng-Lu1
1Institute of Acoustics, Tongji University, Shanghai 200092
2Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, Hohai University, Changzhou 213022
Cite this article:   
WANG Hao, HAN Qing-Bang QIAN Meng-Lu 2012 Chin. Phys. Lett. 29 104304
Download: PDF(629KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The experimental investigation on transparent solid/solid (aluminum and plexiglas) interface leaky waves generated by a pulse laser and detected with a photoelastic effect technique is reported. Three waves, i.e., longitudinal head wave, leaky Rayleigh wave and leaky interface wave, are detected successfully. The leaky waves propagating along the 'weak bonding' interface are also measured. It is found that with the continuing epoxy solidification, the wave amplitude gradually decreases and the two leaky waves are more difficult to distinguish. The velocities of the detected interface wave are in good agreement with the theoretical calculation and the attenuation characteristics of the two leaky waves are also in accordance with the theoretical prediction.
Received: 23 May 2012      Published: 01 October 2012
PACS:  43.20.+g (General linear acoustics)  
  43.25.+d  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hao
HAN Qing-Bang QIAN Meng-Lu
[1] Belovickis J et al 2012 Ultrasonics 52 593
[2] Song S J et al 2006 Ultrasonics 44 e1365
[3] Wang Y X et al 2009 Biosens. Bioelectron. 24 3455
[4] Wilken D et al 2009 J. Appl. Geophys. 68 117
[5] Mozhaev V G and Weihnacht M 2002 Ultrasonics 40 927
[6] Vinh P C and Giang P T H 2012 Int. J. Non-Linear Mech. 47 128
[7] Claus R O and Kline R A 1979 J. Appl. Phys. 50 8066
[8] Han Q B et al 2007 Acta Phys. Sin. 56 313 (in Chinese)
[9] Han Q B et al 2005 Chin. Phys. Lett. 22 3104
[10] Hu W X and Qian M L 2004 Chin. Phys. Lett. 21 1294
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 104304
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 104304
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 104304
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 104304
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 104304
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 104304
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 104304
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 104304
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 104304
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 104304
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 104304
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 104304
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 104304
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 104304
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 104304
Viewed
Full text


Abstract