Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104210    DOI: 10.1088/0256-307X/29/10/104210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Compact Wavelength Demultiplexer Structure Based on Side-Coupled Cavities
CHEN Zhao1,2, SONG Gang1,2, YU Li1,2**, CHEN Jian-Jun1,2, XIAO Jing-Hua1,2
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
CHEN Zhao, SONG Gang, YU Li et al  2012 Chin. Phys. Lett. 29 104210
Download: PDF(552KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel structure based on a side-coupled cavity for optical wavelength demultiplexing is proposed and demonstrated numerically by using the two-dimensional finite element method. It is found that the transmission wavelength of each channel can be tuned by adjusting the geometrical parameters of the structure and the material filling the side-coupled cavity. Moreover, by introducing a reflection nanocavity, the value of the transmitted-peak can be improved significantly. The results of theoretical analysis and simulation are well consistent with each other.
Received: 18 May 2012      Published: 01 October 2012
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.79.-e (Optical elements, devices, and systems)  
  52.25.Fi (Transport properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104210       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Zhao
SONG Gang
YU Li
CHEN Jian-Jun
XIAO Jing-Hua
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Lee Tae-Woo and Gray Stephen K 2005 Opt. Express 13 9652
[3] Wang B and Wang G P 2004 Opt. Lett. 29 1992
[4] Park J, Kim H and Lee B 2008 Opt. Express 16 413
[5] Leon I D and Berini P 2010 Nat. Photon. 4 382
[6] Wurtz G A, Pollard R and Zayats A V 2006 Phys. Rev. Lett. 97 057402
[7] Nikolajsen T, Leosson K and Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833
[8] Enoch S, Quidant R and Badenes G 2004 Opt. Express 12 3422
[9] Kim H, Park J and Lee B 2009 Opt. Lett. 34 2569
[10] Wang B and Wang G P 2005 Appl. Phys. Lett. 87 013107
[11] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[12] Wang T B, Wen X W, Yin C P and Wang H Z 2009 Opt. Express 17 24096
[13] Wang G X, Lu H, Liu X M, Mao D and Duan L N 2011 Opt. Express 19 3513
[14] Hu F F, Yi H X, Zhou Z P 2011 Opt. Lett. 36 1500
[15] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[16] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[17] Lu H, Liu X M, Gong Y K, Mao D and Wang L 2011 Opt. Express 19 12885
[18] Tao J, Huang X G and Zhu J H 2010 Opt. Express 18 11111
Related articles from Frontiers Journals
[1] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 104210
[2] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 104210
[3] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 104210
[4] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 104210
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 104210
[6] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 104210
[7] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 104210
[8] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 104210
[9] ZHANG Xi-Lin, LIU Song-Tao, LU Dan, ZHANG Rui-Kang, JI Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response[J]. Chin. Phys. Lett., 2015, 32(5): 104210
[10] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 104210
[11] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 104210
[12] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 104210
[13] HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li, XIAO Jing-Hua. Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides[J]. Chin. Phys. Lett., 2014, 31(09): 104210
[14] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 104210
[15] ZHANG Xi-Lin, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP[J]. Chin. Phys. Lett., 2014, 31(06): 104210
Viewed
Full text


Abstract