Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104202    DOI: 10.1088/0256-307X/29/10/104202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
THz Imaging Using a Quantum-Well Photodetector with Background Limited Performance
ZHOU Tao, ZHANG Rong, GUO Xu-Guang, TAN Zhi-Yong, CAO Jun-Cheng**
Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
ZHOU Tao, ZHANG Rong, GUO Xu-Guang et al  2012 Chin. Phys. Lett. 29 104202
Download: PDF(544KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Terahertz (THz) quantum well photodetectors (QWPs) are an extension of quantum well infrared photodetectors in the THz region. We construct an imaging system based on a THz QWP with a narrow response range from 3 THz to 6 THz. The peak responsivity of the THz QWP having background-limited performance is about 0.5 A/W, and the corresponding detectivity reaches 1011cm?Hz1/2/W at temperature of 4.2 K. We obtain the images of a concealed object by the imaging system and prove that THz QWPs have the potential for imaging applications.
Received: 27 July 2012      Published: 01 October 2012
PACS:  42.79.Pw (Imaging detectors and sensors)  
  42.30.Wb (Image reconstruction; tomography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Tao
ZHANG Rong
GUO Xu-Guang
TAN Zhi-Yong
CAO Jun-Cheng
[1] Hu B B and Nuss M C 1995 Opt. Lett. 20 1716
[2] Darmo J, Tamosiunas V, Fasching G, Kroll J and Unterrainer K 2004 Opt. Express 12 1879
[3] Kim S M, Hatami F and Harris J S 2006 Appl. Phys. Lett. 88 153903
[4] Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L 2006 IEEE Photon. Technol. Lett. 18 1415
[5] Yin X X, Him Ng B W, Zeitler J A, Nguyen K L, Gladden L F and Abbott D 2010 IEEE Sens. J. 10 1718
[6] Oda N 2010 C. R. Phys. 11 496
[7] Xiong F, Guo X G and Cao J C 2008 Chin. Phys. Lett. 25 1895
[8] Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G and Cao J C 2012 Acta Phys. Sin. 61 098701 (in Chinese)
[9] Tan Z Y, Guo X G, Cao J C, Li H and Han Y J Acta Phys. Sin. 59 2391 (in Chinese)
[10] Liu H C, Song C Y, SpringThorpe A J and Cao J C 2005 Infrared Phys. Technol. 47 169
[11] Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J and Cao J C 2008 IEEE J. Select. Top. Quantum Electron. 14 374
[12] Zhang R, Guo X G, Song C Y, Buchanan M, Wasilewski Z R, Cao J C and Liu H C 2011 IEEE Electron Device Lett. 32 659
[13] Grant P D, Dudek R, Buchanan M, Wolfson L and Liu H C 2005 Infrared Phys. Technol. 44 144
[14] Tan Z Y, Guo X G, Cao J C, Wang X, Feng S L, Wasilewski Z R and Liu H C 2009 Semicond. Sci. Technol. 24 115014
[15] Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J and Cao J C 2006 Infrared Phys. Technol. 50 191
[16] Liu H C, Song C Y and SpringThorpe A J 2004 Appl. Phys. Lett. 84 4068
[17] Levine B F 1993 J. Appl. Phys. 74 R1
[18] Zussman A, Levine B F, Kuo J M and de Jong J 1991 J. Appl. Phys. 70 5101
Related articles from Frontiers Journals
[1] Yi-Yi Gu, Yi-Fan Wang, Jing Xia, Xiang-Min Meng. Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection[J]. Chin. Phys. Lett., 2020, 37(4): 104202
[2] Bing-Cheng Du, Zhao-Hui Li, Guang-Yue Shen, Tian-Xiang Zheng, Hai-Yan Zhang, Lei Yang, Guang Wu. A Photon-Counting Full-Waveform Lidar[J]. Chin. Phys. Lett., 2019, 36(9): 104202
[3] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 104202
[4] Tao Zhou, Rong Zhang, Chen Yao, Zhang-Long Fu, Di-Xiang Shao, Jun-Cheng Cao. Terahertz Three-Dimensional Imaging Based on Computed Tomography with Photonics-Based Noise Source[J]. Chin. Phys. Lett., 2017, 34(8): 104202
[5] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 104202
[6] ZHANG Yan, LI Tao, LI Qing-Ling. Detection of Foreign Bodies and Bubble Defects in Tire Radiography Images Based on Total Variation and Edge Detection[J]. Chin. Phys. Lett., 2013, 30(8): 104202
[7] ZHOU Quan, GUO Shu-Xu, LI Zhao-Han, SONG Jing-Yi, CHANG Yu-Chun. Analysis of Responsivity and Signal-to-Noise Ratio in PEPT[J]. Chin. Phys. Lett., 2012, 29(11): 104202
[8] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 104202
[9] ZHAO An-Di,ZHENG Yong-Jun,YU Xiao-Mei**. Imaging and Characteristics of a Bimaterial Microcantilever FPA Fabricated using Bulk Silicon Processes[J]. Chin. Phys. Lett., 2012, 29(5): 104202
[10] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 104202
[11] WANG Xin-Wei, ZHOU Yan, FAN Song-Tao, HE Jun, LIU Yu-Liang. Range-Gated Laser Stroboscopic Imaging for Night Remote Surveillance[J]. Chin. Phys. Lett., 2010, 27(9): 104202
[12] CHENG Teng, ZHANG Qing-Chuan, JIAO Bin-Bin, CHEN Da-Peng, WU Xiao-Ping. Analysis of Optical Readout Sensitivity for Uncooled Infrared Detector[J]. Chin. Phys. Lett., 2009, 26(12): 104202
[13] XIONG Feng, GUO Xu-Guang, CAO Jun-Cheng. Simulation of Photocurrents of Terahertz Quantum-Well Photodetectors[J]. Chin. Phys. Lett., 2008, 25(5): 104202
[14] CHEN Yu-Ling, GUO Xu-Guang, CAO Jun-Cheng. Theoretical Study on Absorption of Magnetically Tunable Terahertz Quantum-Well Photodetectors[J]. Chin. Phys. Lett., 2006, 23(6): 104202
[15] LI Ming, WANG Ming, RONG Hua, LI Hong-Pu. A Novel Analytical Approach for Multi-Layer Diaphragm-Based Optical Microelectromechanical-System Pressure Sensors[J]. Chin. Phys. Lett., 2006, 23(5): 104202
Viewed
Full text


Abstract