Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 100301    DOI: 10.1088/0256-307X/29/10/100301
GENERAL |
A New Approach to the Quantum Adiabatic Condition
GUO Chu1**, DUAN Qian-Heng1, CHEN Ping-Xing1,2
1Department of Physics, National University of Defense Technology, Changsha 410073
2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
Cite this article:   
GUO Chu, DUAN Qian-Heng, CHEN Ping-Xing 2012 Chin. Phys. Lett. 29 100301
Download: PDF(421KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum adiabatic theorem is the basis of adiabatic quantum computation. However, the exact necessary and sufficient conditions for adiabatic evolution are still under debate. We discuss the adiabatic condition of a system undergoing a special evolution route, and obtain an explicit formula that is necessary and sufficient for the adiabatic evolution in this route. Based on this formula, we find that the traditional adiabatic condition is neither sufficient nor necessary. Finally, we show that no adiabatic process can occur even the evolution speed goes to 0 in some examples, which is surprising since the adiabatic theorem states that if the evolution of a system is slow enough, the adiabatic process could occur.
Received: 26 June 2012      Published: 01 October 2012
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ca (Formalism)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/100301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Chu
DUAN Qian-Heng
CHEN Ping-Xing
[1] Ehrenfest P 1916 Ann. Phys. 356 327
[2] Born M and Fork V 1928 Z. Phys. 51 165
[3] Gell-Mann M and Low F 1951 Phys. Rev. 84 350
[4] Berry M V 1984 Proc. R. Soc. London 392 45
[5] Farhi E et al 2001 Science 292 472
[6] Marzlin K P and Sanders B C 2004 Phys. Rev. Lett. 93 160408
[7] Tong D M, Singh K, Kwek L C and Oh C H 2005 Phys. Rev. Lett. 95 110407
[8] Tong D M 2010 Phys. Rev. Lett. 104 120401
[9] Amin M H S 2009 Phys. Rev. Lett. 102 220401
[10] Du J, Hu L, Wang L, Wu J, Zhao M and Suter D 2008 Phys. Rev. Lett. 101 060403
[11] Tong D M, Singh K, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 150402
[12] MacKenzie R, Marcotte E, Paquette H 2006 Phys. Rev. A 73 042104
[13] Wei Z H and Ying M S 2007 Phys. Rev. A 76 024304
[14] Comparat D 2009 Phys. Rev. A 80 012106
[15] Wu J D, Zhao M S, Chen J L and Zhang Y D 2008 Phys. Rev. A 77 062114
[16] Childs A M, Farhi E and Preskill J 2002 Phys. Rev. A 65 012322
[17] Shenvi N, Brown K R and Whaley K B 2003 Phys. Rev. A 68 052313
[18] Roland J and Cerf N J 2005 Phys. Rev. A 71 032330
[19] Aberg J, Kult D and Sjoqvist E 2005 Phys. Rev. A 71 060312(R)
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 100301
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 100301
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 100301
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 100301
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 100301
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 100301
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 100301
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 100301
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 100301
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 100301
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 100301
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 100301
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 100301
Viewed
Full text


Abstract