Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 100201    DOI: 10.1088/0256-307X/29/10/100201
GENERAL |
The Darboux Transformation and New Explicit Solutions for the Belov–Chaltikian Lattice
XUE Bo**, WANG Xin
Department of Mathematics, Zhengzhou University, Zhengzhou 450001
Cite this article:   
XUE Bo, WANG Xin 2012 Chin. Phys. Lett. 29 100201
Download: PDF(509KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An N-fold Darboux transformation with multi-parameters for the famous Belov–Chaltikian lattice is derived with the aid of the gauge transformation between the corresponding discrete 3×3 matrix spectra. By using the Darboux transformation and the reduction technique, new multi-soliton solutions for the Belov–Chaltikian lattice, which are proved to be of solitary features, are given in the exponential form.
Received: 14 May 2012      Published: 01 October 2012
PACS:  02.30.Jr (Partial differential equations)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/100201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/100201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XUE Bo
WANG Xin
[1] Wadati M and Toda M 1975 J. Phys. Soc. Jpn. 39 1196
[2] Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598
[3] Toda M 1982 Theory of Nonlinear Lattices (Berlin: Springer)
[4] Wu Y T and Geng X G 1996 J. Math. Phys. 37 2338
[5] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM)
[6] Cao C W 1990 Sci. Chin. A 33 528
[7] Hirota R 2004 The Direct Method in Soliton Theory (New York: Cambridge University)
[8] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[9] Belov A A and Chaltikian K D 1993 Phys. Lett. B 309 268
[10] Hu X B and Zhu Z N 1998 J. Phys. A 31 4755
[11] Yang P, Chen Y and Li Z B 2009 Appl. Math. Comput. 210 362
[12] Tsuchida T 2011 J. Math. Phys. 52 053503
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100201
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 100201
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 100201
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 100201
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 100201
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 100201
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 100201
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 100201
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 100201
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 100201
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 100201
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 100201
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 100201
Viewed
Full text


Abstract