CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Terahertz Current Oscillation in Wurtzite InN |
FENG Wei** |
Department of Physics, Jiangsu University, Zhenjiang 212013
|
|
Cite this article: |
FENG Wei 2012 Chin. Phys. Lett. 29 017304 |
|
|
Abstract Current self-oscillation in doped n+nn+ wurtzite InN diodes driven by a dc electric field is theoretically investigated by solving the time−dependent drift-diffusion model. Current self-oscillation is associated with the negative differential mobility effect in the highly non-parabolic conduction band of InN. A detailed analysis of the dependence of current oscillations on the doping concentration and the applied electric field is presented. The current oscillation frequencies can reach up to the terahertz (THz) region. The n+nn+ InN self-oscillating diode may be a promising candidate for THz generation, and the calculation results may guide the design of the devices.
|
Keywords:
73.61.Ey
85.30.Fg
85.30.De
|
|
Received: 05 August 2011
Published: 07 February 2012
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.Fg
|
(Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
|
|
[1] O'Leary S K, Foutz B E, Shur M S and Eastman L F 2006 Appl. Phys. Lett. 88 152113
[2] Yamamoto A, Tsujino M, Ohkubo M and Hashimoto A 1994 Sol. Energy Mater. Sol. Cells 35 53
[3] Polyakov V M and Schwierz F 2006 Appl. Phys. Lett. 88 032101
[4] Chin V W L, Tansley T L and Osotchan T 1994 J. Appl. Phys. 75 7365
[5] Polyakov V M and Schwierz F 2006 J. Appl. Phys. 99 113705
[6] Polyakov V M and Schwierz F 2006 Semicondut. Sci. Technol. 21 1651
[7] Veal T D, McConville C F and Schaff W J 2010 Indium Nitride and Related Alloys (Florida: CRC Press)
[8] Bellotti E, Doshi B K, Blennan K F, Albrecht J D and Ruden P P 1999 J. Appl. Phys. 85 916
[9] Fitzer N, Kuligk A, Redmer R, Städele M, Goodnick S M and Schattke W 2003 Phys. Rev. B 67 201
[10] Cao J C, Liu H C and Lei X L 2000 J. Appl. Phys. 87 2867
[11] Cao J C 2003 Phys. Rev. Lett. 91 237401
[12] Wu J, Walukiewicz W, Shan W, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W J 2002 Phys. Rev. B 66 201403
[13] Rinkea P, Scheffler M, Qteish A, Winkelnkemperb M, Bimberg D and Neugebauer J 2006 Appl. Phys. Lett. 89 161919
[14] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521
[15] Wu J Q 2009 J. Appl. Phys. 106 011101
[16] Walukiewicz W, Li S X, Wu J, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W 2004 J. Cryst. Growth 269 119
[17] Hauser J R, Glisson T H and Littlejohn M A 1979 Solid State Electron. 22 487
[18] Polyakov V M, Schwierz F, Fuchs F, Furthmüller J and Bechstedt F 2009 Appl. Phys. Lett. 94 022102
[19] Masyukov N A and Dmitriev A V 2011 J. Appl. Phys. 109 023706
[20] Cao J C, Li A Z, Lei X L and Feng S L 2001 Appl. Phys. Lett. 79 3524
[21] Selberherr S 1984 Analysis and Simulation of Semiconductor Devices (Berlin: Springer)
[22] Cao J C, Liu H C, Lei X L and Perera A G U 2001 Phys. Rev. B 63 115308
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|