CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structural, Electronic and Optical Properties of KTa0.5Nb0.5O3 Surface: A First-Principles Study |
SUN Hong-Guo1**, ZHOU Zhong-Xiang1, YUAN Cheng-Xun1, YANG Wen-Long1, WANG He2 |
1Department of Physics, Harbin Institute of Technology, Harbin 150001
2College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040
|
|
Cite this article: |
SUN Hong-Guo, ZHOU Zhong-Xiang, YUAN Cheng-Xun et al 2012 Chin. Phys. Lett. 29 017303 |
|
|
Abstract The crystal surface properties of potassium tantalite niobate, KTa0.5Nb0.5O3 (KTN), are studied with first−principles calculation based on the density functional theory (DFT). Generalized gradient approximation (GGA) functional analysis is also employed by using CASTEP software. The explanations for the differences of the ferroelectric and piezoelectric properties between the bulk and surface of the material are provided. The DFT with GGA is used to determine the structure and to calculate the electronic and optical properties of the chemically ordered KTa0.5Nb0.5O3 crystal (100), (110) and (111) surfaces. The results show that the surface properties are different from the bulk properties. The data obtained agree with the expected values and can serve as guidance for future experimental studies in the fields of photorefraction and nonlinear optics.
|
Keywords:
73.20.At
77.84.Ek
78.68.+m
|
|
Received: 09 August 2011
Published: 07 February 2012
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
77.84.Ek
|
(Niobates and tantalates)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
|
|
|
[1] Zhao X Y, Wang Y H, Zhang M, Zhao N, Gong S and Chen Q 2011 Chin. Phys. Lett. 28 0607101
[2] Gong S, Wang Y H, Zhao X Y, Zhang M, Zhao N and Duan Y F 2011 Chin. Phys. Lett. 28 087402
[3] Shen Y Q and Zhou Z X 2008 J. Appl. Phys. 103 074113
[4] Wang Y, Shen Y Q and Zhou Z X 2011 Physica B 406 850
[5] Shen Y Q and Zhou Z X 2008 Comput. Mater. Sci. 42 434
[6] Ishai P B, Agranat A J and Feldman Y 2006 Phys. Rev. B 73 104
[7] Francesco I, Stefano C and Rosa D F 2008 J. Phys. Chem. C 112 13540
[8] Rauls E, Blankenburg S and W G Schmidt 2008 Surf. Sci. 602 2170
[9] Ma S H, Zu X T and Jiao Z Y 2008 Solid State Commun. 147 152
[10] Kotomin E A, Mastrikov Y A, Heifetsa E and Maiera J 2008 Phys. Chem. Chem. Phys. 10 4644
[11] Kaghazchi P and Jacob T 2007 Phys. Rev. B 76 245425
[12] Zhu W H and Xiao H M, 2007 J. Solid State Chem. 180 3521
[13] Falabrettia B and Robertson J, 2007 J. Appl. Phys. 102 123703
[14] Wang X P, Wang J Y, Yu Y G, Zhang H J and Boughton R I 2006 J. Cryst. Growth 293 398
[15] Jin D, Rehman A, Qain H Q, Jiang L Z, Zhang H J, Li H Y, He P M and Bao S N 2011 Chin. Phys. Lett. 28 116804
[16] Szukiewicz R, Kolaczkiewicz J andYakovkin I N 2008 Surf. Sci. 602 2610
[17] Li D F, Guo Z C, Li B L, Dong H N and Xiao H Y 2011 Chin. Phys. Lett. 28 086802
[18] Ubogy I, Stepanovski S and Kolaczkiewicz J 2000 Phys. Rev. B 61 11097
[19] Zhao N, Wang Y H, Zhao X Y, Zhang M and Gong S 2011 Chin. Phys. Lett. 28 077101
[20] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys: Condens. Matter 14 2717
[21] Hanske P O, Yacoby Y, Leon J M, Stern E A and Rehr J J 1991 Phys. Rev. B 44 6700
[22] Sun H G, Zhou Z X, Shen Y Q and Yuan C X 2010 Comput. Mater. Sci. 50 338
[23] Shen Y Q, Zhou Z X, Tian H and Jang Y Y 2007 Physica B 400 212
[24] Xie Y, Yu H T, Zhang G X, Fu H G and Sun J Z 2007 J. Phys. Chem. C 111 6343
[25] Ciucivara A, Sahu B and Kleinman L 2008 Phys. Rev. B 77 092407
[26] Didomenico M and Wemple S H 1969 J. Appl. Phys. 40 720
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|