Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014302    DOI: 10.1088/0256-307X/29/1/014302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides
LUO Wen-Yu1**, YANG Chun-Mei1,2, ZHANG Ren-He1
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2Graduate University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
LUO Wen-Yu, YANG Chun-Mei, ZHANG Ren-He 2012 Chin. Phys. Lett. 29 014302
Download: PDF(985KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An accurate and numerically stable method based on the coupled-mode theory is presented. By applying the direct global matrix approach to obtain the modal expansion coefficients, this method is numerically stable. In addition, appropriately normalized range solutions are introduced, which resolves the overflow problem entirely. Furthermore, we put forward source conditions appropriate for the line-source problem in plane geometry. As a result, this method is capable of dealing with the scenario where a line source is located inside the region of a deformation. Closed-form expressions for coupling matrices are provided for ideal waveguides. Numerical results indicate that the present method is accurate and numerically stable. Consequently, this model can serve as a benchmark in range-dependent propagation modeling.
Keywords: 43.30.Bp      43.30.Gv      43.20.Fn     
Received: 05 September 2011      Published: 07 February 2012
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Gv (Backscattering, echoes, and reverberation in water due to combinations of boundaries)  
  43.20.Fn (Scattering of acoustic waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Wen-Yu
YANG Chun-Mei
ZHANG Ren-He
[1] Collis J M, Siegmann W L, Jensen F B, Zampolli M, Küsel E T and Collins M D 2008 J. Acoust. Soc. Am. 123 51
[2] Pierce A D 1965 J. Acoust. Soc. Am. 37 19
[3] Collins M D, Schmidt H and Siegmann W L 2000 J. Acoust. Soc. Am. 107 1964
[4] Zampolli M, Tesei A, Jensen F B, Malm N and Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472
[5] Ferla C, Porter M and Jensen F 1993 C-SNAP: Coupled SACLANTCEN normal mode propagation model (La Spezia: SACLANT Undersea Research Centre)
[6] Porter M B, Jensen F B and Ferla C M 1991 J. Acoust Soc. Am. 89 1058
[7] Evans R B 1986 J. Acoust. Soc. Am. 80 1414
[8] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics (New York: American Institute of Physics)
[9] Schmidt H and Jensen F B 1985 J. Acoust. Soc. Am. 77 813
[10] 1986 J. Acoust. Soc. Am. Suppl. 1 80 S36
[11] 1987 J. Acoust. Soc. Am. Suppl. 1 81 S39
[12] Jensen F B and Ferla C M 1990 J. Acoust. Soc. Am. 87 1499
[13] Buckingham M J and Tolstoy A 1990 J. Acoust. Soc. Am. 87 1511
Related articles from Frontiers Journals
[1] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 014302
[2] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 014302
[3] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 014302
[4] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 014302
[5] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 014302
[6] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 014302
[7] LIANG Bin, ZOU Xin-Ye, CHENG Jian-Chun. Phase Transition in Acoustic Localization in a Soft Medium Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2009, 26(2): 014302
[8] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 014302
[9] PENG Han-Shu, LI Feng-Hua. Geoacoustic Inversion Based on a Vector Hydrophone Array[J]. Chin. Phys. Lett., 2007, 24(7): 014302
[10] CUI Zhi-Wen, WANG Ke-Xie, SUN Jian-Guo, ZHU Zheng-Ya, YAO Gui-Jin, HU Heng-Shan. Numerical Simulation of Shear-Horizontal-Wave-Induced Electromagnetic Field in Borehole Surrounded by Porous Formation[J]. Chin. Phys. Lett., 2007, 24(12): 014302
[11] ZHANG Ren-He, SU Xiao-Xing, LI Feng-Hua. Improvement of Low-Frequency Acoustic Spatial Correlation by Frequency-Shift Compensation[J]. Chin. Phys. Lett., 2006, 23(7): 014302
[12] LIU Jian-Jun, LI Feng-Hua, PENG Zhao-Hui. Stochastic Inversion of Seabottom Scattering Coefficients from Shallow-Water Reverberation[J]. Chin. Phys. Lett., 2003, 20(12): 014302
[13] LI Feng-Hua, LIU Jian-Jun. Bistatic Reverberation in Shallow Water: Modeling and Data Comparison[J]. Chin. Phys. Lett., 2002, 19(8): 014302
[14] GUO Liang-Hao, GONG Zai-Xiao, Wu Li-Xin. Space and Time Coherence of Acoustic Field in Shallow-Water [J]. Chin. Phys. Lett., 2001, 18(10): 014302
Viewed
Full text


Abstract