Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014301    DOI: 10.1088/0256-307X/29/1/014301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Propagation of Shear Waves Generated by Acoustic Radiation Force in Nondissipative Inhomogeneous Media
LU Ming-Zhu, LIU Xue-Jin, SHI Yu, KANG Yan-Ni, GUAN Yu-Bo, WAN Ming-Xi**
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049
Cite this article:   
LU Ming-Zhu, LIU Xue-Jin, SHI Yu et al  2012 Chin. Phys. Lett. 29 014301
Download: PDF(1505KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue. The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method. A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated. It is noted that unlike the dissipative effect, the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis, compresses or stretches the focus area. The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement. This action is useful in discerning the water-like lesion.
Keywords: 43.25.Qp      43.80.Ev      43.25.Cb     
Received: 03 August 2011      Published: 07 February 2012
PACS:  43.25.Qp (Radiation pressure?)  
  43.80.Ev (Acoustical measurement methods in biological systems and media)  
  43.25.Cb (Macrosonic propagation, finite amplitude sound; shock waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Ming-Zhu
LIU Xue-Jin
SHI Yu
KANG Yan-Ni
GUAN Yu-Bo
WAN Ming-Xi
[1] Sarvazyan A, Rudenko O and Swanson S 1998 Ultrasound Med. Biol. 24 1419
[2] Zhao G M, Lu M Z and Wan M X 2009 Chin. Phys. Soc. 58 6596
[3] Rudenko O, Sarvazyan A and Emelianov S 1996 J. Acoust. Soc. Am. 99 2791
[4] Nightingale K, Soo MS, and Nightingale R 2002 Ultrasound Med. Biol. 28 227
[5] Bercoff J, Tanter M and Fink M 2004 IEEE Trans. Ultrason. Ferroelect. Freq. Control. 51 396
[6] Palmeri M L, Wang M H and Dahl J J 2008 Ultrasound Med. Biol. 34 546
[7] Ostrovsky L, Sutin A and ll'inskii Y 2007 J. Acoust. Soc. Am. 121 1324
[8] Dalong L and Ebbini E 2008 IEEE Trans. Ultrason. Ferroelect. Freq. Control. 55 368
[9] Madsen E L, Sathoff H J and Zagrebski J A 1983 J. Acoust. Soc. Am. 74 1346
Related articles from Frontiers Journals
[1] LI Yi-Ling, LIU Zhen-Bo, MA Qing-Yu, GUO Xia-Sheng, ZHANG Dong. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction[J]. Chin. Phys. Lett., 2010, 27(8): 014301
[2] DING De-Sheng, ZHANG Yu. A Simple Calculation Approach for the Second-Harmonic Sound Beam Generated by an Arbitrary Distribution Source[J]. Chin. Phys. Lett., 2004, 21(3): 014301
[3] DING De-Sheng, XU Jian-Yi, WANG Yao-Jun. Second-Harmonic Generation of Bessel Beams in Lossy Media [J]. Chin. Phys. Lett., 2002, 19(5): 014301
[4] XIA Rong-Min, SHOU Wen-De, CHEN Guo-Ping, WANG Hong-Zhang. Focusing Ultrasonic Field of Holed Cap Spherical Shell Transducer Using the Spheroidal Beam Equation[J]. Chin. Phys. Lett., 2002, 19(3): 014301
Viewed
Full text


Abstract