Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090402    DOI: 10.1088/0256-307X/28/9/090402
GENERAL |
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
M Sharif**, G Abbas
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
Cite this article:   
M Sharif, G Abbas 2011 Chin. Phys. Lett. 28 090402
Download: PDF(429KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ→0.
Keywords: 04.70.Bw      04.70.Dy      95.35.+d     
Received: 20 April 2011      Published: 30 August 2011
PACS:  04.70.Bw (Classical black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  95.35.+d (Dark matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090402       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M Sharif
G Abbas
[1] Perlmutter S et al 1997 Astrophys. J. 483 565
[2] Perlmutter S et al 1998 Nature 391 51
[3] Perlmutter S et al 1999 Astrophys. J. 517 565
[4] Riess A G et al 1998 Astron. J. 116 1009
[5] Bennett C L et al 2003 Astrophys. J. Suppl. 148 1
[6] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[7] Verde L et al 2002 Mon. Not. R. Astron. Soc. 335 432
[8] Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373
[9] Caldwell R R 2002 Phys. Lett. B 23 545
[10] Sen A J 2002 High Energy Phys. 48 204
[11] Wang B, Gong Y G and Abdalla E 2005 Phys. Lett. B 624 141
[12] Li M 2004 Phys. Lett. B 603 1
[13] Frieman J A et al 1995 Phys. Rev. Lett. 75 2077
[14] Coble K, Dodelson S and Frieman J A 1997 Phys. Rev. D 55 1851
[15] Hinshaw G et al 2009 Astrophys. J. Suppl. 180 225
[16] Bondi H 1952 Mon. Not. Roy. Astron. Soc. 112 195
[17] Michel F C 1972 Astrophys. Space Sci. 15 153
[18] Babichev E, Dokuchaev V and Eroshenko Y 2004 Phys. Rev. Lett. 93 021102
[19] Jamil M, Rashid M and Qadir A 2008 Eur. Phys. J. C 58 325
[20] Babichev E, Dokuchaev V and Eroshenko Y J 2011 Exp. Theor. Phys. 112 793
[21] Madrid J A Jimenez and Gonzalez-Dias P F 2008 Gravit. Cosmol. 14 213
[22] Sharif M and Abbas G 2011 Mod. Phys. Lett. A 26 1731
[23] Sung-Won K 1991 J. Korean Phys. Soc. 24 118
[24] Gibbons G W and Hawking S W 1997 Phys. Rev. D 15 2752
[25] Khanel U and Panchapakesan N 1981 Phys. Rev. D 24 829
[26] Nagai H 1972 Prog. Theor. Phys. 82 322
[27] Martin-Moruno P et al 2009 Gen. Relativ. Gravit. 41 2797
[28] Padmanabhan T 2000 Theoretical Astrophysics: Astrophysical Processes (Cambridge: Cambridge University) vol 1
Related articles from Frontiers Journals
[1] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 090402
[2] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 090402
[3] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 090402
[4] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 090402
[5] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 090402
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 090402
[7] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 090402
[8] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 090402
[9] QIN Hong-Yi**, WANG Wen-Yu, XIONG Zhao-Hua . A Simple Singlet Fermionic Dark-Matter Model Revisited[J]. Chin. Phys. Lett., 2011, 28(11): 090402
[10] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 090402
[11] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 090402
[12] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 090402
[13] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 090402
[14] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 090402
[15] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 090402
Viewed
Full text


Abstract