Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 068903    DOI: 10.1088/0256-307X/28/6/068903
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Local Natural Connectivity in Complex Networks
SHANG Yi-Lun
Institute for Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA
Cite this article:   
SHANG Yi-Lun 2011 Chin. Phys. Lett. 28 068903
Download: PDF(397KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In network theory, a complex network represents a system whose evolving structure and dynamic behavior contribute to its robustness. The natural connectivity is recently proposed as a spectral measure to characterize the robustness of complex networks. We decompose the natural connectivity of a network as local natural connectivity of its connected components and quantify their contributions to the network robustness. In addition, we compare the natural connectivity of a network with that of an induced subgraph of it based on interlacing theorems. As an application, we derive an inequality for eigenvalues of Erdös-Rényi random graphs.
Keywords: 89.75.Hc      89.75.Fb      02.10.Ox     
Received: 24 October 2010      Published: 29 May 2011
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
  02.10.Ox (Combinatorics; graph theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/068903       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/068903
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHANG Yi-Lun
[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Amaral L A N and Uzzi B 2007 Management Sci. 53 1033
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[4] Newman M E J 2003 SIAM Rev. 45 167
[5] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[6] Bollobás B and Riordan O 2004 Internet Math. 1 1
[7] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. 23 263
[8] Hu B, Li F and Zhou H S 2009 Chin. Phys. Lett. 26 128901
[9] Wang J W and Rong L L 2008 Chin. Phys. Lett. 25 3826
[10] Battilotti S 2008 Automatica 44 348
[11] Shang Y 2010 Int. J. Math. Anal. 4 1205
[12] Shang Y 2010 Chin. Phys. B 19 070201
[13] Frank H and Frisch I 1970 IEEE Trans. Commun. Tech. 18 567
[14] Esfahanian A H and Hakimi S 1988 Inform. Process. Lett. 27 195
[15] Krishnamoorth M and Krishnamirthy B 1987 Comput. Math. Appl. 13 577
[16] Chvátal V 1973 Discrete Math. 5 215
[17] Jung H 1978 J. Comb. Theor. B 24 125
[18] Mohar B 1989 J. Comb. Theor. B 47 274
[19] Barrat A, Barthélemy M and Vespignani A 2008 Dynamical Process on Complex Networks (Cambridge: Cambridge University Press) p1
[20] Fiedler M 1973 Czech. Math. J. 23 298
[21] Wu J, Barahona M, Tan Y J and Deng H Z 2010 Chin. Phys. Lett. 27 078902
[22] Wu J, Barahona M, Tan Y J and Deng H Z 2010 arXiv:1009.3430
[23] Wu J, Barahona M, Tan Y J and Deng H Z 2009 arXiv:0912.2144
[24] Wu J, Deng H Z and Tan Y J 2010 The Third IEEE International Conference on Computer Science and Information Technology (Chengdu China 9–11 July 2010) p 50
[25] Shang Y 2011 J. Phys. A: Math. Theor. 44 075003
[26] Haemers W H 1995 Lin. Algebra Appl. 227 593
[27] Estrada E 2000 Chem. Phys. Lett. 319 713
[28] Estrada E and Rodríguez-Velázquez J A 2005 Phys. Rev. E 72 046105
[29] Estrada E and Rodríguez-Velázquez J A 2005 Phys. Rev. E 71 056103
[30] Barabási A L and Albert R 1999 Science 286 509
[31] Cohen R, Erez K, ben-Avraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682
[32] Bollobás B 2001 Random Graphs (Cambridge: Cambridge University) p 1
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 068903
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 068903
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 068903
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 068903
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 068903
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 068903
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 068903
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 068903
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 068903
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 068903
[11] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 068903
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 068903
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 068903
[14] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 068903
[15] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 068903
Viewed
Full text


Abstract