GENERAL |
|
|
|
|
Experimental Violation of Multiple-Measurement Time-Domain Bell's Inequalities |
TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng**, XU Jin-Shi, CHEN Geng, ZOU Yang, ZHOU Zong-Quan, GUO Guang-Can
|
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng et al 2011 Chin. Phys. Lett. 28 060304 |
|
|
Abstract In the original time-domain Bell's inequalities (Leggett-Garg-type inequalities), the physical objective is measured at three time points. When more time points are chosen, several methods can be used to extend these inequalities. We experimentally demonstrate the violation of these extended inequalities using single photons from a self-assembled quantum dot. In general, for each extension, the quantity by which the quantum-mechanics value exceeds the classical limit becomes larger as the number of measurement time points increases. This quantity has a maximum value for the extensions that have the same number of measurement time points. Furthermore, we evaluate the noise tolerance for these extensions with a quantity that is related to the number of standard deviations by which the experimental result surpasses the classical limit.
|
Keywords:
03.65.Ta
42.50.Xa
78.67.Hc
|
|
Received: 16 February 2011
Published: 29 May 2011
|
|
PACS: |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Xa
|
(Optical tests of quantum theory)
|
|
78.67.Hc
|
(Quantum dots)
|
|
|
|
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bohr N 1935 Phys. Rev. 48 696
[3] Bohm D and Hiley B J 1933 The Undivided Universe: An Ontological Interpretation of Quantum Theory (London: Routledge)
[4] Bell J S 1964 Physics 1 195
[5] Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[6] Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
[7] Mermin N D 1990 Phys. Today 43 9
[8] Peres A 1991 J. Phys. A: Math. Gen. 24 L175
[9] Huang Y F, Li C F, Zhang Y S, Pan J W and Guo G C 2003 Phys. Rev. Lett. 90 250401
[10] Cabello A 2008 Phys. Rev. Lett. 101 210401
[11] Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2009 Nature 460 494
[12] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[13] Freedman S J and Clauser J F 1972 Phys. Rev. Lett. 28 938
[14] Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
[15] Leggett A J 2002 J. Phys. Condens. Matter 14 R415
[16] Jordan A N, Korotkov A N and Büttiker M 2006 Phys. Rev. Lett. 97 026805
[17] Kofler J and Brukner Č 2007 Phys. Rev. Lett. 99 180403
[18] Williams N S and Jordan A N 2008 Phys. Rev. Lett. 100 026804
[19] Huelga S F, Marshall T W and Santos E 1995 Phys. Rev. A 52 R2497
[20] Avis D, Hayden P and Wilde M M 2010 Phys. Rev. A 82 030102(R)
[21] Xu J S, Li C F, Zou X B and Guo G C, http://arxiv.org/abs/0907.0176v1
[22] Goggin M E, Almeida M P, Barbieri M, Lanyon B P, O'Brien J L, White A G and Pryde G J 2011 Proc. Natl. Acad. Sci. USA 108 1256
[23] Palacios-Laloy A, Mallet F, Nguyen F, Bertet P, Vion D, Esteve D and Korotkov A N 2010 Nature Phys. 6 442
[24] Barbieri M 2009 Phys. Rev. A 80 034102
[25] Dou X M, Sun B Q, Huang S S, Ni H Q and Niu Z C 2008 Chin. Phys. Lett. 25 501
[26] Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Huang S S, Ni H Q, Du Y and Xia J B 2008 Appl. Phys. Lett. 93 101107
[27] Tang J S, Li C F, Gong M, Chen G, Zou Y, Xu J S and Guo G C 2009 Physica E 41 797
[28] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|