Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 030202    DOI: 10.1088/0256-307X/28/3/030202
GENERAL |
Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica
WANG Jun-Min
Department of Mathematics and Information, Henan University of Finance and Law, Zhengzhou 450002
Cite this article:   
WANG Jun-Min 2011 Chin. Phys. Lett. 28 030202
Download: PDF(520KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the aid of Mathematica, three auxiliary equations, i.e. the Riccati equation, the Lenard equation and the Hyperbolic equation, are employed to investigate traveling wave solutions of a cosh-Gaussian laser beam in both Kerr and cubic quintic nonlinear media. As a result, many traveling wave solutions are obtained, including soliton-like solutions, hyperbolic function solutions and trigonometric function solutions.
Keywords: 02.30.Ik      03.65.Ge     
Received: 25 September 2010      Published: 28 February 2011
PACS:  02.30.Ik (Integrable systems)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/030202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/030202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jun-Min
[1] Chiao R Y et al 1964 Phys. Rev. Lett. 13 479
[2] Kelley P L 1965 Phys. Rev. Lett. 15 1005
[3] Silberbarg Y 1990 Opt. Lett. 15 1282
[4] Bergé L 1998 Phys. Rep. 303 259
[5] Li Y 2000 J. Opt. Soc. Am. B 17 555
[6] Johannisson P et al 2003 Opt. Commun. 222 107
[7] Casperson L W et al 1997 J. Opt. Soc. Am. A 14 3341
[8] Aben H and Ainola L 1998 J. Opt. Soc. Am. A 15 954
[9] Konar S, Mishra M and Jana S 2008 Phys. Lett. A 362 505
[10] Konar S et al 2007 Phys. Lett. A 362 505
[11] Zhu S D 2007 Chaos, Solitons and Fractals 34 1608
[12] Zhang L H 2009 Appl. Math. Comput. 208 144
[13] Zhang S et al 2010 J. Adv. Math. Studies 3 125
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[6] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 030202
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 030202
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 030202
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[14] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030202
Viewed
Full text


Abstract