Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 107701    DOI: 10.1088/0256-307X/28/10/107701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties
CAO Wen-Qiang1,2,3, LU Ming-Ming1, WEN Bo1, CHEN Yuan-Lu1, LI Hong-Bo1, YUAN Jie3**, CAO Mao-Sheng1**
1School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081
2School of EMPS, University College Dublin, Dublin 4, Ireland
3School of Information Engineering, Minzu University of China, Beijing 100081
Cite this article:   
CAO Wen-Qiang, LU Ming-Ming, WEN Bo et al  2011 Chin. Phys. Lett. 28 107701
Download: PDF(1564KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We synthesize composite systems of multi-wall carbon nanotubes (MWCNTs)/SiO2 by using the sol−gel method. The dielectric properties of the systems with different-concentration MWCNTs are studied. In our MWCNTs/SiO2 inorganic systems, the twin−percolation phenomenon exists when the concentrations of MWCNTs are 5–10% and 15–20%. The permittivity and conductivity have jumping changes. The twin−percolation phenomenon is attributed to the special transfer mechanism of MWCNTs in the system, determined by hopping and migrating electrons. Variations of dielectric properties and conductance of the MWCNTs/SiO2 systems are conformed to the percolation theory. The special percolation phenomenon and electric properties of MWCNTs/SiO2 can help us comprehend the conductivity mechanism of the MWCNTs/SiO2 systems effectively, and promote the development of a high performance function composite system.
Keywords: 77.22.Ch      73.23.-b      72.80.Tm      72.20.Ee     
Received: 29 July 2011      Published: 28 September 2011
PACS:  77.22.Ch (Permittivity (dielectric function))  
  73.23.-b (Electronic transport in mesoscopic systems)  
  72.80.Tm (Composite materials)  
  72.20.Ee (Mobility edges; hopping transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/107701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/107701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Wen-Qiang
LU Ming-Ming
WEN Bo
CHEN Yuan-Lu
LI Hong-Bo
YUAN Jie
CAO Mao-Sheng
[1] Wang G S, Deng Y and Guo L 2010 Chem. Eur. J. 16 10220
[2] Cao M S, Shi X L, Fang X Y, Jin H B, Hou Z L, Zhou W and Chen Y J 2007 Appl. Phys. Lett. 91 203110
[3] Cao M S, Zhou W, Shi X L and Chen Y J 2007 Appl. Phys. Lett. 91 021912
[4] Che R C, Zhi C Y, Liang C Y and Zhou X G 2006 Appl. Phys. Lett. 88 033105
[5] Guo L, Ji Y L, Xu H B, Simon P and Wu Z Y 2002 J. Am. Chem. Soc. 124 14864
[6] Chen W, Wang N, Liu L, Cui Y R, Cao X, Chen Q J and Guo L 2009 Nanotechnology 20 445601
[7] Shi X L, Cao M S, Zhao Y N, Song W L and Rong J L 2008 Sci. Chin. E 51 1433
[8] Shi X L, Cao M S, Yuan J and Fang X Y 2009 Appl. Phys. Lett. 95 163108
[9] Shi X L, Cao M S, Yuan J, Zhao Q L, Kang Y Q, Fang X Y and Chen Y J 2008 Appl. Phys. Lett. 93 183118
[10] Shi X L, Cao M S, Fang X Y, Yuan J, Kang Y Q and Song W L 2008 Appl. Phys. Lett. 93 223112
[11] Cao M S, Song W L, Hou Z L, Wen B and Yuan J 2010 Carbon 48 788
[12] Song W L, Cao M S, Hou Z L, Fang X Y, Shi X L and Yuan J 2009 Appl. Phys. Lett. 94 233110
[13] Song W L, Cao M S, Hou Z L, Yuan J and Fang X Y 2009 Scripta Mater. 61 201
[14] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401
[15] Yuan J K, Yao S H, Dang Z M, Sylvestre A, Genestoux M and Bai J B 2011 J. Phys. Chem. C 115 5515
[16] Dang Z M, Jiang M J, Xie D, Yao S H, Zhang L Q and Bai J B 2008 J. Appl. Phys. 104 024114
[17] Jiang M J, Dang Z M, Yao S H and Bai J B 2008 Chem. Phys. Lett. 457 352
[18] Dang Z M, Wang L and Zhang L P 2006 J. Nanomater. 83583
[19] Jiang M J, Dang Z M and Xu H P 2007 Eur. Polym. J. 43 4924
[20] Yao S H, Dang Z M, Jiang M J, Xu H P and Bai J B 2007 Appl. Phys. Lett. 91 212901
[21] Dang Z M, Wang L, Yin Y, Zhang Q and Lei Q Q 2007 Adv. Mater. 19 852
[22] Jiang M J, Dang Z M and Xu H P 2007 Appl. Phys. Lett. 90 042914
[23] Wang L and Dang Z M 2005 Appl. Phys. Lett. 87 042903
[24] Dang Z M, Fan L Z, Shen Y and Nan C W 2003 Mater. Sci. Eng. B 103 140
[25] Deng Y, Li N, Wang Y, Zhang Z W, Dang Y and Liang J Y 2010 Mater. Lett. 64 528
[26] Deng Y, Zhang J Y, Xiang Y, Wang G S and Xu H B 2009 J. Mater. Chem. 19 2058
[27] Wang G S, Deng Y, Xiang Y and Guo L 2008 Adv. Funct. Mater. 18 2584
[28] Deng Y, Wang G S, Li N and Guo L 2009 J. Lumin. 129 55
[29] Skakalova V, Kaiser A B, Woo Y S and Roth S 2006 Phys. Rev. B 74 085403
[30] Kaiser A B 2001 Adv. Mater. 13 927
[31] Kaiser A B 2001 Rep. Prog. Phys. 64 1
[32] Kaiser A B, Dusberg G and Roth S 1998 Phys. Rev. B 57 1418
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 107701
[2] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 107701
[3] CUI Yin-Fang, WANG Cong, WU Su-Juan, LIU Yu, WANG Tian-Min. Preparation and Photocatalytic Activity of ZnO/Fe2O3 Nanorod Arrays and ZnO/NiO Nanotube Arrays[J]. Chin. Phys. Lett., 2012, 29(3): 107701
[4] HOU Zhi-Ling**, KONG Ling-Bao, JIN Hai-Bo, CAO Mao-Sheng, LI Xiao, QI Xin. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors[J]. Chin. Phys. Lett., 2012, 29(1): 107701
[5] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 107701
[6] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 107701
[7] S. Pengmanayol, T. Osotchan, M. Suewattana, N. Ingadapa, J. Girdpun . Hole Mobility of Molecular β-Copper Phthalocyanine Crystal[J]. Chin. Phys. Lett., 2011, 28(8): 107701
[8] HE Xiao-Yang, CHEN Qi, LI Lin-Cui, YANG Chun**, LI Biao, ZHOU Bang-Hua, TANG Chuan-Xiang . Nonresonant Metamaterials with an Ultra-High Permittivity[J]. Chin. Phys. Lett., 2011, 28(5): 107701
[9] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 107701
[10] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 107701
[11] WU Yu-Qiang, WU Hong-Ying**, ZHAO Jie, LU Cui-Min, ZHANG Bao-Long, LIU Qing-Suo, MA Yong-Chang, . The Evidence for Ferroelectricity on Magnetite Ceramics below the Verwey Transition[J]. Chin. Phys. Lett., 2011, 28(12): 107701
[12] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 107701
[13] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 107701
[14] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 107701
[15] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 107701
Viewed
Full text


Abstract