NUCLEAR PHYSICS |
|
|
|
|
Tensor Effect on Bubble Nuclei |
WANG Yan-Zhao 1, GU Jian-Zhong1,2**, ZHANG Xi-Zhen1, DONG Jian-Min1,3
|
1China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413
2Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000
3School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
|
|
Cite this article: |
WANG Yan-Zhao, GU Jian-Zhong, ZHANG Xi-Zhen et al 2011 Chin. Phys. Lett. 28 102101 |
|
|
Abstract In the framework of the Hartree–Fock–Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of TIJ parametrizations, i.e. the Skyrme interaction parametrizations including the tensor terms, the proton density distribution in 34Si and 46Ar nuclei is calculated with and without the tensor force. It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force. As to 46Ar, the SLy5+Tw parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2–1d3/2 inversion). The inversion mechanism induced by the SLy5+Tw interaction is analyzed based on the proton single−particle spectra obtained from the SLy5 and SLy5+Tw interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.
|
Keywords:
21.10.Pc
21.30.Fe
21.60.Jz
|
|
Received: 05 July 2011
Published: 28 September 2011
|
|
PACS: |
21.10.Pc
|
(Single-particle levels and strength functions)
|
|
21.30.Fe
|
(Forces in hadronic systems and effective interactions)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
|
|
|
[1] Nuclear Structure Division, Chinese Nuclear Physics Society 2006 High Ener. Phys. and Nucl. Phys. 30 Supp. II 1
[2] Meng J, Liu Y X and Zhou S G 2009 Sci. Chin. G: Phys. Mech. Astron. 52 1449
[3] Liang Y J et al 2009 Chin. Phys. Lett. 26 032102
[4] Qian Y B et al 2010 Chin. Phys. Lett. 27 072301
[5] Grasso M et al 2009 Int. J. Mod. Phys. E18 2009
[6] Wilson A H, 1946 Phys. Rev. 69 538
[7] Campi X and Sprung L W D 1973 Phys. Lett. B46 291
[8] Grasso M et al 2007 Phys. Rev. C 76 044319
[9] Bender M et al 2003 Phys. Rev. C 60 034304
[10] Todd-Rutel B G et al 2004 Phys. Rev. C 69 021301(R)
[11] Khan E et al 2008 Nucl. Phys. A800 37
[12] Grasso M et al 2009 Phys. Rev. C 79 034318
[13] Hilaire S and Girod M 2006 http://www-phynu.cea.fr/science_en_ligne/carte_potentials_microscop/iques /carte_potential_nucleaire.htm
[14] Wiringa B R et al 1995 Phys. Rev. C 51 38
[15] Machleidt R 2001 Phys. Rev. C 63 024001
[16] Stancu F et al 1977 Phys. Lett. B68 108
[17] Wiringa B R et al A 1988 Phys. Rev. C 38 1010
[18] Zalewski M et al 2009 Phys. Rev. C 80, 064307
[19] Bai C L et al 2010 Phys. Rev. Lett. 105 072501
[20] Bai C L et al 2010 Chin. Phys. Lett. 27 102101
[21] Cao L G et al 2009 Phys. Rev. C 80 064304
[22] Cao L G et al 2011 Phys. Rev. C 83 034324
[23] Otsuka T et al 2005 Phys. Rev. Lett. 95 232502
[24] Otsuka T et al 2006 Phys. Rev. Lett. 97 162501
[25] Otsuka T et al 2010 Phys. Rev. Lett. 104 012501
[26] Coló G et al 2007 Phys. Lett. B 646 227
[27] Zou W et al 2008 Phys. Rev. C 77 014314
[28] Brink M D and Stancu F 2007 Phys. Rev. C 75 064311
[29] Wang Y Z et al 2011 Phys. Rev. C 83 054305
[30] Moreno-Torres M et al 2010 Phys. Rev. C 81 064327
[31] Skyrme R H T 1956 Phil. Magn. 1 1043 Skyrme R H T 1959 Nucl. Phys. 9 615
[32] Chabanat E et al 1998 Nucl. Phys. A 635 231
[33] Bennaceur K and Dobaczewski J 2005 Comput. Phys. Commun. 168 96
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|