Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100507    DOI: 10.1088/0256-307X/28/10/100507
GENERAL |
Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model
YUAN Xiao-Ping1,2, ZHENG Zhi-Gang1**
1Department of Physics and the Beijing-Hongkong-Singapore Joint Center for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing 100875
2Information Engineering School, Hangzhou Dianzi University, Hangzhou 310018
Cite this article:   
YUAN Xiao-Ping, ZHENG Zhi-Gang 2011 Chin. Phys. Lett. 28 100507
Download: PDF(691KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ground state of a generalized Frenkel–Kontorova model with a transversal degree of freedom is studied. When the coupling strength, K, and the frequency of a single−atom vibration in the transversal direction, ω0y, are increased, the ground state of the model undergoes a transition from a two−dimensional configuration to a one-dimensional one. This transition can manifest in different ways. Furthermore, we find that the prerequisite of a two-dimensional ground state is θ≠1/q.
Keywords: 05.10.-a      05.45.-a      82.40.CK     
Received: 21 July 2011      Published: 28 September 2011
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100507       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Xiao-Ping
ZHENG Zhi-Gang
[1] Hamilton J C 2002 Phys. Rev. Lett. 88 126101
[2] Müller B, Fischer B, Nedelmann L, Fricke A and Kern K 1996 Phys. Rev. Lett. 76 2358
[3] Dubos P, Courtois H, Buisson O and Pannetier B 2001 Phys. Rev. Lett. 87 206801
[4] Kitamura M, Irie A and Oya G I 2007 Phys. Rev. B 76 064518
[5] Kautz R L, 1981 Appl. Phys. 52 3528
[6] Weiss M and Elmer F J 1996 Phys. Rev. B 53 7539
[7] Persson B N J 1998 Sliding Friction: Physical Principles and Applications (Berlin: Springer-Verlag)
[8] Lin M M, Duan W S and Chen J M 2010 Chin. Phys. B 19 026201
[9] Grüner G 1988 Rev. Mod. Phys. 60 1129
[10] McCarten J, DiCarlo D A, Maher M P, Adelman T L and Thorne R E 1992 Phys. Rev. B 46 4456
[11] Shao Z G, Yang L, Chan H K and Hu B 2009 Phys. Rev. E 79 061119
Shao Z G, Yang L, Zhong W R, He D H and Hu B 2008 Phys. Rev. E 78 061130
Hu B and Yang L 2005 Chaos 15 015119
[12] Wang B H, Kwong Y R, Hui P M and Hu B 1999 Phys. Rev. E 60 149
[13] Braun O M, Dauxois T, Paliy M V and Peyrard M 1997 Phys. Rev. Lett. 78 1295
Braun O M, Dauxois T, Paliy M V and Peyrard M 1997 Phys. Rev. E 55 3598
[14] Paliy M V, Braun O M, Dauxois T and Hu B 1997 Phys. Rev. E 56 4025
[15] Tekié J, He D H and Hu B 2009 Phys. Rev. E 79 036604
[16] Floría L M and Falo F 1992 Phys. Rev. Lett. 68 2713
[17] Zheng Z G, Hu B and Hu G 1998 Phys. Rev. B 58 5453
[18] Qin W X, Hu B and Zheng Z G 2005 Physica D 208 172
[19] Yuan X P, Chen H B and Zheng Z G 2006 Chin. Phys. 15 1464
Yuan X P and Zheng Z G 2007 Chin. Phys. Lett. 24 2513
[20] Braun O M, Paliy M V, Röder J and Bishop A R 2001 Phys. Rev. E 63 036129
[21] Savin A V, Zubova E A and Manevitch L I 2005 Phys. Rev. B 71 224303
[22] Li R T, Duan W S, Yang Y, Wang C L and Chen J M 2011 Europhys. Lett. 94 56003
[23] Braun O M, Chubykalo O A, Kivshar Yu S and Valkering T P 1998 Physica D 113 152
[24] Braun O M and Peyrard M 1995 Phys. Rev. E 51 4999
[25] Braun O M and Kivshar Yu S 1991 Phys. Rev. B 44 7694
[26] Braun O M 1990 Surf. Sci. 230 262
[27] Peyrard M and Aubry S 1983 J. Phys. C 16 1593
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100507
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100507
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100507
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100507
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100507
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100507
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 100507
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100507
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100507
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100507
[11] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 100507
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100507
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100507
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 100507
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100507
Viewed
Full text


Abstract