Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 100504    DOI: 10.1088/0256-307X/28/10/100504
GENERAL |
The IOSS Chaos Synchronization Method
Choon Ki Ahn*
Faculty of the Department of Automotive Engineering, Seoul National University of Science & Technology, 172 Gongneung 2-dong, Nowon-gu, Seoul 139-743, Korea
Cite this article:   
Choon Ki Ahn 2011 Chin. Phys. Lett. 28 100504
Download: PDF(443KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new synchronization method, called the input/output-to-state stable synchronization (IOSSS) method, is proposed for a general class of chaotic systems with external disturbance. By introducing Lyapunov stability theory and linear matrix inequality (LMI) for the first time, the IOSSS controller is shown to not only guarantee the synchronization of the chaotic systems, but also reduce the effect of external disturbance. The proposed IOSSS controller can be obtained by solving the LMI, which can easily be done using standard numerical packages. A numerical example is given to demonstrate the availability of the proposed method.
Keywords: 05.45.-a     
Received: 18 February 2011      Published: 28 September 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/100504       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/100504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Choon Ki Ahn
[1] Pecora L M and Carroll T L 1996 Phys. Rev. Lett. 64 821
[2] Chen G and Dong X 1998 From Chaos to Order (Singapore: World Scientific)
[3] Wang C and Su J 2004 Chaos, Solitons and Fractals 20 967
[4] Ott E, Grebogi C, and Yorke J 1990 Phys. Rev. Lett. 64 1196
[5] Park J 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 201
[6] Wang Y, Guan Z, and Wang H 2003 Phys. Lett. A 312 34
[7] Yang X and Chen G 2002 Chaos, Solitons and Fractals 13 1303
[8] Bai E and Lonngren K 2000 Chaos, Solitons and Fractals 11 1041
[9] Park J H and Kwon O M 2005 Chaos, Solitons and Fractals 23 445
[10] Wu X and Lu J 2003 Chaos, Solitons and Fractals 18 721
[11] Hu J, Chen S, and Chen L 2005 Phys. Lett. A 339 455
[12] Ahn C K 2010 Nonlinear Analysis: Hybrid Systems 4 16
[13] Ahn C K 2010 Chin. Phys. Lett. 27 010503
[14] Sontag E and Wang Y 1997 Syst. Control. Lett. 29 279
[15] Krichman M, Sontag E, and Wang Y 2001 SIAM J. Control Optim. 39 1874
[16] Laila D and Nesic D 2003 Automatica 39 821
[17] Angeli D, Ingalls B, Sontag E and Wang Y 2004 SIAM J. Control Optim. 43 256
[18] Cai C and Teel A 2007 Syst. Control. Lett. 56 408
[19] Cai C and Teel A 2008 Automatica 44 326
[20] Boyd S, Ghaoui L E, Feron E and Balakrishinan V 1994 Linear Matrix Inequalities in Systems and Control Theory (Philadelphia: SIAM)
[21] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI Control Toolbox (Natick: Mathworks)
[22] Strang G 1986 Introduction to Applied Mathematics (Cambridge: Wellesley Cambridge Press)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 100504
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 100504
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100504
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 100504
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 100504
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 100504
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100504
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 100504
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 100504
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 100504
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 100504
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 100504
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100504
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 100504
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 100504
Viewed
Full text


Abstract