Chin. Phys. Lett.  2010, Vol. 27 Issue (8): 080503    DOI: 10.1088/0256-307X/27/8/080503
GENERAL |
Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics
C. F. Lo
Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
Cite this article:   
C. F. Lo 2010 Chin. Phys. Lett. 27 080503
Download: PDF(445KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We demonstrate that Fokker-Planck equations with logarithmic factors in diffusion and drift terms can be straightforwardly derived from the class of "constant elasticity of variance" stochastic processes without appealing to any symmetry argument. Analytical closed-form solutions are available for some special cases of this class of Fokker-Planck equations. The dynamics of the underlying stochastic variables are examined. These Fokker-Planck equations have found a rather wide range of applications in various contexts. In particular, in the field of econophysics we have demonstrated their immediate relevance to modelling the exchange rate dynamics in a target zone, e.g. the linked exchange rate system of the Hong Kong dollar. Furthermore, the knowledge of exact solutions in some special cases can be useful as a benchmark to test approximate numerical or analytical procedures.

Keywords: 05.40.-a      02.50.Ey      05.10.Gg     
Received: 23 March 2010      Published: 28 July 2010
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.Ey (Stochastic processes)  
  05.10.Gg (Stochastic analysis methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/8/080503       OR      https://cpl.iphy.ac.cn/Y2010/V27/I8/080503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
C. F. Lo
[1] Risken H 1989 Fokker-Planck Equation (Berlin: Springer-Verlag)
[2] Gardiner CW 1985 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences 2nd edn (Berlin: Springer-Verlag)
[3] Mantegna R N and Stanley H E 2000 An Introduction to Econophysics (Cambridge: Cambridge University)
[4] Pesz K 2002 J. Phys. A 35 1827
[5] Jeffrey DJ and Onishi Y 1984 J. Fluid Mech. 139 261
[6] Dettman C P et al 2000 J. Stat. Phys. 101 775
[7] Lo C F 2003 Phys. Lett. A 319 110
[8] Lo C F 2010 Computational and Mathematical Methods in Medicine 11 3
[9] Silva E M et al 2006 J. Phys. : Conference Series 40 150
[10] Cardeal J A et al 2007 J. Phys. A 40 13467
[11] Cox J C and Ross S A 1976 J. Fin. Econ. 3 145
[12] Krugman P 1991 Quart. J. Economics 106 669
[13] Christensen P O, Lando D and Miltersen K R 1998 Review of Derivatives Research 1 295
[14] de Jong F et al 2001 Statistica Neerlandica 55 270
[15] Ingersoll Jr J E 1997 Review of Derivatives Research 1 159
[16] Ball CA and Roma A 1993 Journal of International Money and Finance 12 475
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[2] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[3] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 080503
[4] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 080503
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 080503
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 080503
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 080503
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 080503
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 080503
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 080503
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 080503
[12] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 080503
[13] LÜ, Yan**, BAO Jing-Dong . Inertial Lévy Flight with Nonlinear Friction[J]. Chin. Phys. Lett., 2011, 28(11): 080503
[14] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 080503
[15] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 080503
Viewed
Full text


Abstract