FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Theoretical Analysis of the Critical Phenomena of a Brillouin Laser |
SU Yu-Huan1, SHI Jin-Wei1, OUYANG Min2, YANG Guo-Jian1, LIU Da-He1 |
1Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, Beijing 100875 2School of Information Photoelectric Science and Technology, South China Normal University, Guangzhou 510631 |
|
Cite this article: |
SU Yu-Huan, SHI Jin-Wei, OUYANG Min et al 2010 Chin. Phys. Lett. 27 074203 |
|
|
Abstract The critical phenomena of a Brillouin laser are analyzed theoretically. The results show that the behavior of a Brillouin laser in the threshold region is a second-order phase transition. The critical point of the phase transition is the gain threshold of the Brillouin laser, and the order parameter is the amplitude of the Stokes component in stimulated Brillouin scattering. The critical slow-down phenomenon and the typical characteristics in phase transition are demonstrated. Further work on the combination of nonlinear optics and phase transition in the Brillouin laser may lead to a new view and findings that could be significant for both fields.
|
Keywords:
42.65.Es
05.70.Fh
78.35.+c
|
|
Received: 08 March 2010
Published: 28 June 2010
|
|
PACS: |
42.65.Es
|
(Stimulated Brillouin and Rayleigh scattering)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
78.35.+c
|
(Brillouin and Rayleigh scattering; other light scattering)
|
|
|
|
|
[1] DeGiorgio V and Scully M O 1970 Phys. Rev. A 2 1170 [2] Gordon A and Fischer B 2002 Phys. Rev. Lett. 89 103901 [3] Vodonos B, Weill R, Gordon A, Bekker A, Smulakovsky V, Gat O and Fischer B 2004 Phys. Rev. Lett. 93 153901 [4] Weill R, Rosen A, Gordon A, Gat O and Fischer B 2005 Phys. Rev. Lett. 95 013903 [5] Hill K O, Kawasaki B S and Johnson D C 1976 Appl. Phys. Lett. 28 608 [6] Stokes L F, Chodorow M and Shaw H J 1982 Opt. Lett. 7 509 [7] Randoux S, Lecoeuche V, Sdgard B and Zemmouri J 1995 Phys. Rev. A 51 R4345 [8] Harrison R G, Uppal J S, Johnstone A and Moloney J V 1990 Phys. Rev. Lett. 65 167 [9] Harrison R G, Ripley P M and Lu W P 1994 Phys. Rev. A 49 R24 [10] Ogusu K 2001 Optical Review 8 358 [11] Lee S H and Kim C M 2006 Opt. Lett. 31 3131 [12] Kovalev V I and Harrison R G 2000 Phys. Rev. Lett. 85 1879 [13] Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley) pp 187-192 [14] Damzen M J, Vlad V I, Babin V and Mocofanescu A 2003 Stimulated Brillouin Scattering Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp 1-42 [15] Boyd R W 2008 Nonlinear Optics (Burlington: Academic) pp 429-448 [16] Gibbs H M 1985 Optical Bistability: Controlling Light with Light (Orlando: Academic) pp 24 46-54 8194;8194;8194;8194;Svelto O 1976 Principles of Lasers (New York: Plenum) pp 171-179 [17] Bonifacio R and Lugiato L A 1978 Phys. Rev. A 18 1129 [18] Haken H 1975 Rev. Mod. Phys. 47 67 [19] Haken H 1984 Laser Theory (Berlin: Springer) pp 116-120 [20] Sun Q Q, Shahriar M S and Zubairy M S 2008 Phys. Rev. A 78 013805 [21] Landau L D and Lifshitz I M 1959 Statistical Physics (London-Paris: Pergamon) chap 14 [22] Yu L and Hao B L 1980 Physics 9 376 (in Chinese). [23] Agrawal G P 2001 Nonlinear Fiber Optics (New York: Academic) p 368 [24] Zarinetchi F, Smith S P and Ezekiel S 1991 Opt. Lett. 16 229
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|