CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Molecular-Dynamics Simulations of Droplets on a Solid Surface |
GAO Yu-Feng, SUN De-Yan |
Department of Physics, East China Normal University, Shanghai 200062 |
|
Cite this article: |
GAO Yu-Feng, SUN De-Yan 2010 Chin. Phys. Lett. 27 066802 |
|
|
Abstract By using a semi-empirical Lennard-Jones embedded-atom-method potential, we study the influence of many-body forces and atomic size mismatch on the wetting behavior of nano droplets on a solid surface. With molecular dynamics simulations, we find that the contact angle decreases with increasing many-body forces. The increase of atomic size mismatch between solid and liquid results in the decrease of contact angles. Our calculation also shows that the interface structure is strongly affected by the interaction between liquid and solid as well as the atomic size mismatch. For weak solid-liquid interaction, the interface layer of the droplet nearest to the solid exhibits a typical simple liquid structure regardless of the size mismatch. For strong solid-liquid interaction, evident ordering in the interface layer is observed for well matched cases.
|
Keywords:
68.08.De
02.60.-x
|
|
Received: 19 March 2010
Published: 25 May 2010
|
|
PACS: |
68.08.De
|
(Liquid-solid interface structure: measurements and simulations)
|
|
02.60.-x
|
(Numerical approximation and analysis)
|
|
|
|
|
[1] Peters R D, Yang X M, Kim T K, Sohn B H and Nealey P F 2000 Langmuir 16 4625 [2] Lopes W A and Jaeger H 2001 Nature 414 735 [3] De Gennes P G 1985 Rev. Mod. Phys. 57 827 [4] Bonn D, Eggers J, Indekeu J, Meunier J and Rolley E 2009 Rev. Mod. Phys. 81 739 [5] Fei K, Chiu C P and Hong C W 2008 Microfluidics and Nanofluidics 4 321 [6] Lin J, Zheng Z J, Yu J L and Bai Y L 2009 Chin. Phys. Lett. 26 086802 [7] Hautman J and Klein M 1991 Phys. Rev. Lett. 67 1763 [8] Webb III E B, Greast G S and Heine D R 2003 Phys. Rev. Lett. 91 236102 [9] Heine D R, Greast G S and Webb III E B 2005 Phys. Rev. Lett. 95 107801 [10] Webb E B, Hoyt J J, Greast G S and Heine D R 2005 J. Mater. Sci. 40 2281 [11] Kuboy A, Makino T, Sugiyama D and Tanaka S I 2005 J. Mater. Sci. 40 2395 [12] Hirvi J T and Pakkanen T A 2006 J. Chem. Phys. 125 144712 [13] Nijmeijer M J P, Bruin C, Bakker A F and van Leeuwen J M J 1989 Physica A 160 166 [14] Nijmeijer M J P, Bruin C and Bakker A F 1990 Phys. Rev. A 42 6052 [15] Yang J X, Koplik J and Banavar J R 1991 Phys. Rev. Lett. 67 3539 [16] Werder T, Walther J H, Jaffe R L, Halicioglu T and Koumoutsakos P 2003 J. Phys. Chem. B 107 1345 [17] Guo H K and Fang H P 2005 Chin. Phys. Lett. 22 787 [18] McDonald A J and Hanna S 2007 Phys. Rev. E 75 041703 [19] Voronov R S, Papavassilious D V and Lee L L 2006 J. Chem. Phys. 124 204701 [20] Shi B and Dhir V K 2009 J. Chem. Phys. 130 034705 [21] Van Remoortere P, Metrz J E, Scriven L E and David H T 1999 J. Chem. Phys. 110 2621 [22] Milchev A, Milchevb A and Bindera K 2002 Comput. Phys. Commun. 146 38 [23] Nórskov J K, Jacobsen K W, Stoltze P, Hansen L B 1993 Surf. Sci. 283 277 [24] Baskes M I 1999 Phys. Rev. Lett. 83 2592 [25] Baskes M 2004 JOM 56 45 [26] Nam H S, Mendelev M I and Srolovitz D J 2007 Phys. Rev. B 75 014204 [27] Pao C W and Srolovitz D J 2006 Phys. Rev. Lett. 96 186103 [28] Baskes M I and Stan M 2003 Metall. Mater. Trans. A 34 435 [29] Wang T, Zhou F X and Liu Y W 2002 Chin. Phys. 11 139 [30] NoséS 1984 J. Chem. Phys. 81 511 8194;8194;8194;8194;Hoover W G 1985 Phys. Rev. A 31 1695
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|