CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Quantum Mechanical Study on Tunnelling and Ballistic Transport of Nanometer Si MOSFETs |
DENG Hui-Xiong1, JIANG Xiang-Wei1, TANG Li-Ming2 |
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 2Department of Applied Physics, Hunan University, Changsha 410082 |
|
Cite this article: |
DENG Hui-Xiong, JIANG Xiang-Wei, TANG Li-Ming 2010 Chin. Phys. Lett. 27 057101 |
|
|
Abstract Using self-consistent calculations of million-atom Schrödinger-Poisson equations, we investigate the I-V characteristics of tunnelling and ballistic transport of nanometer metal oxide semiconductor field effect transistors (MOSFET) based on a full 3-D quantum mechanical simulation under nonequilibtium condition. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. We find that the ballistic transport dominates the I-V characteristics, whereas the effects of tunnelling cannot be neglected with the maximal value up to 0.8 mA/μm when the channel length of MOSFET scales down to 25 nm. The effects of tunnelling transport lower the threshold voltage Vt. The ballistic current based on fully 3-D quantum mechanical simulation is relatively large and has small on-off ratio compared with results derived from the calculation methods of Luo et al.
|
Keywords:
71.15.Dx
73.23.Ad
73.40.Qv
|
|
Received: 15 October 2009
Published: 23 April 2010
|
|
PACS: |
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
73.23.Ad
|
(Ballistic transport)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Ieong M, Doris B, Kedzierski J, Rim K and Yang M 2004 Science 306 2057 [2] Anisur R, Jing G, Supriyo D and Lundstrom Mark S 2003 IEEE Trans. Electron Devices 50 1853 [3] Sverdlov V A, Walls T J and Likharev K K 2003 IEEE Trans. Electron Devices 50 1926 [4] Walls T J et al 2003 Physica E 19 23 [5] Asenov A et al 2003 Solid-State Electron. 47 1141 [6]Taur Y 2002 IBM J. Res. Dev. 46 213 and reference therein Taur Y et al 1997 Proc. IEEE 85 {486} [7] Rhew J H and Lundstrom M S 2002 J. Appl. Phys. 92 5196 [8] Luo J W, Li S S, Xia J B and Wang L W 2007 Appl. Phys. Lett. 90 143108 [9]Asenov A, Slavcheva G, Brown A R, Davies J H and Saini S 2001 IEEE Trans. Electron Devices 48 722 [10]Curatola G, Fiori G and Iannaccone G 2004 Solid-State Electron. 48 581 [11]Wang J, Polizzi E and Lundstrom M S 2004 J. Appl. Phys. 96 2192 [12]Bescond M, Autran J L, Munteanu D and Lannoo M 2004 Solid-State Electron. 48 567 [13]Deng H X, Jiang X W, Luo J W, Li S S, Xia J B and Wang L W 2008 J. Appl. Phys. 103 124507 [14]Wang L W and Zunger A 1996 Phys. Rev. B 54 11417 [15]Wang L W and Zunger A 1996 Phys. Rev. B 59 15806 [16]Bardeen J 1961 Phys. Rev. Lett. 6 57 [17]Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: Wiley) [18] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|