CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Large-Area Self-Assembly of Rubrene on Au(111) Surface |
LIU Xiao-Qing1, KONG Hui-Hui1, CHEN Xiu1, DU Xin-Li1, CHEN Feng1, LIU Nian-Hua1,2, WANG Li1,2
|
1Department of Physics, Nanchang University, Nanchang 330031 2Nanoscience and Nanotechnology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031 |
|
Cite this article: |
LIU Xiao-Qing, KONG Hui-Hui, CHEN Xiu et al 2010 Chin. Phys. Lett. 27 056804 |
|
|
Abstract Large-area self-assembly of rubrene has been fabricated on Au(111) surface and studied by scanning tunnelling microscopy. The rubrene monolayer on Au(111) surface is characterized by well-ordered row-like structures similar to the a-b plane of rubrene single crystal. However, the directions of the neighboured molecular rows are opposite to each other. In a two-layer film of rubrene on Au(111) surface, the arrangements of the top molecular rows are determined by the underneath rows, suggesting an orthorhombic crystal structure with a=1.26 nm, b=4.36 nm, c=0.17 nm for multilayer of rubrene on Au(111).
|
Keywords:
68.37.Ef
68.43.Hn
81.07.Nb
|
|
Received: 02 December 2009
Published: 23 April 2010
|
|
PACS: |
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.43.Hn
|
(Structure of assemblies of adsorbates (two-and three-dimensional clustering))
|
|
81.07.Nb
|
(Molecular nanostructures)
|
|
|
|
|
[1] Kühnle A 2009 Current Opinion in Colloid & Interface Science 14 157 [2]Jiang P,Wang L, Ning Y X, QI Y, Ma X C, Jia J F and Xue Q K 2009 Chin. Phys. Lett. 26 016803 [3] Bain C D and Whitesides G M 1989 Angew. Chem. Int. Ed. Engl. 28 506 [4] Laibinis P E and Whitesides G M 1992 J. Am. Chem. Soc. 114 9022 [5] Watson J D and Crick F H C 1953 Nature 171 737 [6] Petitjean A et al 2004 J. Am. Chem. Soc. 126 6637 [7] P Maksymovych et al 2006 Phys. Rev. Lett. 97 146103 [8] Lee M, Jang C J and Ryu J H 2004 J. Am. Chem. Soc. 126 8082 [9] Whitesides G M, Mathias J P and Seto C T 1991 Science 254 1312 [10] Tang Z et al 2008 Chin. Phys. Lett. 25 2977 [11] Chaki N K and Vijayamohanan K 2002 Biosens Bioelectron. 17 1 [12] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277 [13] Horowitz G 1998 Adv. Mater. 10 365 [14] Boer de R W I, Gershenson M E, Morpurgo A F and Podzorov V 2004 Phys. Status Solidi A 201 1302 [15] Reese C and Bao Z N 2007 Mater. Today. 10 20 [16] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252 [17] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550 [18] Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99 [19]Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541 [20] Podzorov V et al 2004 Phys. Rev. Lett. 93 086602 [21]Zhang Z L et al 1997 Synth. Met. 91 131 [22] Sundar V C et al 2004 Science 303 1644 [23] Jurchescu O D, Meetsma A and Palstra T T M 2006 Acta Crystallogr. B 62 330 [24] Menard E et al 2006 Adv. Mater. 18 1552 [25]Luo Y et al 2007 Adv. Mater. 19 2267 [26]Kowarik S et al 2006 Phys. Chem. Chem. Phys. 8 1834 [27]Wang L et al 2007 Apply. Phys. Lett. 90 132121 [28] Käfer D et al 2005 Phys. Rev. Lett. 95 166602 [29] Käfer D and Witte G 2005 Phys. Chem. Chem. Phys. 7 2850 [30] Ribic P R and Bratina G 2007 J. Phys. Chem. C 111 18558 [31] Pivetta M et al 2008 Angew. Chem. Int. Edn. 47 1076 [32]Blüm M C et al 2005 Angew. Chem. Int. Edn. 44 5334 [33] Blüm M C et al 2006 Phys. Rev. B 73 195409 [34] Miwa J A et al 2008 Nanotechnology 19 424021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|