CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Quantitative Characterization of Partial Dislocations in Nanocrystalline Metals |
NI Hai-Tao, ZHANG Xi-Yan, ZHU Yu-Tao
|
College of Materials Science and Engineering, Chongqing University, Chongqing 400044 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 |
|
Cite this article: |
NI Hai-Tao, ZHANG Xi-Yan, ZHU Yu-Tao 2010 Chin. Phys. Lett. 27 056101 |
|
|
Abstract Partial dislocations in nanocrystalline metals are introduced and a modified dislocation density formula for partial dislocations is established by x-ray line profile analysis theories. Effects of factors on the determination of partial dislocation density are discussed. From the correlation between the partial and perfect dislocations, partial dislocation density is simply quantitative characterized by drawing on the evaluation methodology of perfect dislocations. Dislocation densities of nanocrystalline nickel calculated from two different equations are compared additionally.
|
Keywords:
61.10.Nz
61.72.Bb
|
|
Received: 25 November 2009
Published: 23 April 2010
|
|
|
|
|
|
[1] Stewart D and Cheong K S 2008 Curr. Appl. Phys. 8 494 [2] Gutkin M Y, Ovid'ko I A and Skiba N V 2004 Phys. Solid State 46 2042 [3] Bobylev S V, Gutkin M Y and Ovid'ko I A 2006 Phys. Rev. B 73 064102 [4] Wu X L and Ma E 2006 Appl. Phys. Lett. 88 061905 [5] Zhang X Y, Wu X L and Zhu A W 2009 Appl. Phys. Lett. 94 121907 [6] Zhang X Y, Wu X L, Xia B Y, Zhou M Z, Zhou S J and Jia C 2005 Chin. Phys. Lett. 22 2335 [7]Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M I, He D W and Zhu Y T 2003 Appl. Phys. Lett. 83 632 [8] Zhao Y H, Lu K and Zhang K 2002 Phys. Rev. B 66 085404 [9] Gottler E 1973 Philos. Mag. 28 1057 [10] Dragomir I C, Li D S, Castello-Branco G A, Garmestani H, Snyder R L, Ribark G and Ungár T 2005 Mater. Charact. 55 66 [11] Székely F, Groma I and Lendvai J 2001 Scripta Mater. 45 55 [12] Hakim B, Karim I and Matteo L 2005 Mater. Sci. Eng. A 400--401 142 [13] Ungár T 2007 J. Mater. Sci. 42 1584 [14] Gubicza J, Ribárik G, Goren-Muginstein G R, Rosen A R and Ungár T 2001 Mater. Sci. Eng. A 309--310 60 [15] Ungár T 2001 Mater. Sci. Eng. A 309--310 14 [16] Ungár T, Gubicza J, Ribarik G and Borbely A 2001 J. Appl. Cryst. 34 298 [17] Dey S, Chatterjee P and Gupta S 2005 Acta Mater. 53 4635 [18] Williamson G K and Smallman R E 1956 Philos. Mag. 1 34 [19] Smallman R E and Westmacott K H 1957 Philos. Mag. 2 669 [20] Zhao Y H, Horita Z, Langdon T G and Zhu Y T 2008 Mater. Sci. Eng. A 474 342 [21] Budrovic Z, Swygenhoven H V, Derlet P M, Petegem S V and Schmitt B 2004 Science 34 273 [22] Derlet P M, Hasnaoui A and Swygenhoven H V 2003 Scripta Mater. 49 629 [23] Gryaznov V G, Polonsoky I A, Romanov A E and Trusov L I 1991 Phys. Rev. B 44 42 [24] Kamminga J D and Seijbel L J 2004 J. Res. Natl. Inst. Stand. Technol. 109 65 [25] Groma I and Székely F 2000 Appl. Cryst. 33 1329 [26] Markmann J, Yamakov V and Weissmuller J 2008 Scripta Mater. 59 15 [27] Whelan M J 1959 Proc. R. Soc. Lond. A 249 114 [28] Yamakov V, Wolf D, Phillpot S R and Gleiter H 2003 Acta Mater. 51 4135 [29] Hasnaoui A, Derlet P M and Swygenhoven H V 2004 Acta Mater. 52 2251 [30] Shimokawa T, Kinari T and Shintaku S 2007 Phys. Rev. B 75 144108
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|