Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 054201    DOI: 10.1088/0256-307X/27/5/054201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Characteristics and New Measurement Method of NCSFs of Individual Color Mechanisms of Human Vision
GE Jing-Jing1,2, WANG Zhao-Qi1,2, WANG Yan3, ZHAO Kan-Xing3
1Institute of Modern Optics, Nankai University, Tianjin 300071 2The Key Laboratory of Opto-electronic Information Science and Technology (Ministry of Education), Nankai University, Tianjin 300071 3Tianjin Eye Hospital, Refractive Surgery Center, Tianjin 300020
Cite this article:   
GE Jing-Jing, WANG Zhao-Qi, WANG Yan et al  2010 Chin. Phys. Lett. 27 054201
Download: PDF(602KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new method for determining neural
contrast sensitivity functions (NCSFs) of isolated color mechanisms based
on the measurements of wave-front aberrations and isoluminant color
contrast sensitivity functions (CSFs). Compared with the traditional
method, this technique avoids the coherent noise and speckle noise, which
are brought by the interference of laser beams, and has great
flexibility for the measurements of NCSF of different color mechanisms.
Our experiments indicate that the mean NCSF and CSF of the red mechanism
are higher than those of the green mechanism, respectively, while those of
the blue mechanism are the lowest. However the relative heights of the
peak of NCSF and CSF between red and green mechanisms vary in subjects.
There are some individuals whose peak values of NCSF and/or CSF of green
mechanism are higher than that of the red mechanism. The NCSFs and CSFs of
isolated color mechanisms all exhibit the similar characteristics and
variation tendency. With the statistical average, the NCSFs of the red,
green and blue mechanisms are higher than the corresponding CSFs in the
whole spatial frequency. Compared with the corresponding CSFs curves, the
peaks of the NCSFs of isolated color mechanisms shift toward higher
spatial frequencies, especially for that of blue mechanism which has a
largest shift of 3.9 c/deg.
Keywords: 42.30.Va      42.66.Ew     
Received: 17 October 2009      Published: 23 April 2010
PACS:  42.30.Va (Image forming and processing)  
  42.66.Ew (Physiology of eye; optic-nerve structure and function)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/054201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/054201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GE Jing-Jing
WANG Zhao-Qi
WANG Yan
ZHAO Kan-Xing
[1] Bellucci R et al 2005 J. Cataract Refractive Surgery 31 4
[2] Alberto V et al 1998 Ann. Med. 30 4
[3] Cavonius C R and Estevez O 1975 J. Physiol. 248 649
[4] Campbell F W and Green D G 1965 J. Physiol. 181 576
[5] Dressler M and Rassow B 1981 Invesr. Ophthalmol. 21 737
[6] David R W 1985 J. Opt. Soc. Am. A l2 7
[7] Felipe A, Artigas J M and Pons A M 1997 J. Opt. Soc. Am. A 14 5
[8] Liang J, Grimm B, Goelz S and Bille J 1994 J. Opt. Soc. Am. A 11 1948
[9] Zhao H X et al 2009 Chin. Phys. Lett. 26 5
[10] Zhao H X et al 2008 Chin. Phys. Lett. 25 4
[11] Wang W, Wang Z Q et al 2006 Chin. Phys. Lett. 23 3
[12] Liu M, Wang Z Q et al 2008 Opt. 119 8
[13] Andrew S and Lindsay T S 2000 Vision Research 40 1711
[14] Roorda A and Williams D R 1999 Nature 397 520
Related articles from Frontiers Journals
[1] WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media[J]. Chin. Phys. Lett., 2012, 29(6): 054201
[2] CAO Bin**, ZHANG Chun-Xi, OU Pan, LIN Zhi-Li, SUN Ming-Jie. Two-Detector Arbitrary Nth-Order HBT-Type Ghost Diffraction[J]. Chin. Phys. Lett., 2012, 29(1): 054201
[3] GE Jing-Jing**, WANG Zhao-Qi . Luminance Effects on Neural Mechanism at Photopic Level[J]. Chin. Phys. Lett., 2011, 28(5): 054201
[4] ZHAO Sheng-Mei**, DING Jian, DONG Xiao-Liang, ZHENG Bao-Yu . Ghost Imaging Using Orbital Angular Momentum[J]. Chin. Phys. Lett., 2011, 28(12): 054201
[5] WANG Xin-Wei**, ZHOU Yan, FAN Song-Tao, LIU Yu-Liang . Temporal Parameter Optimization in Four-Dimensional Flash Trajectory Imaging[J]. Chin. Phys. Lett., 2011, 28(11): 054201
[6] LIU Shi-Yuan, **, LIU Wei, WU Xiao-Fei . Fast Evaluation of Aberration-Induced Intensity Distribution in Partially Coherent Imaging Systems by Cross Triple Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 054201
[7] ZHU Jing-Yi, LIU Ben-Kang, WANG Yan-Qiu, HE Hai-Xiang, WANG Li. Dynamics of H2 in Intense Femtosecond Laser Field[J]. Chin. Phys. Lett., 2010, 27(9): 054201
[8] WANG Xin-Wei, ZHOU Yan, FAN Song-Tao, HE Jun, LIU Yu-Liang. Range-Gated Laser Stroboscopic Imaging for Night Remote Surveillance[J]. Chin. Phys. Lett., 2010, 27(9): 054201
[9] XU Xian-Feng, CAI Lu-Zhong, WANG Yu-Rong, LI Dai-Lin. Accurate Phase Shift Extraction for Generalized Phase-Shifting Interferometry[J]. Chin. Phys. Lett., 2010, 27(2): 054201
[10] BING Pi-Bin, **, YAO Jian-Quan, XU De-Gang, XU Xiao-Yan, LI Zhong-Yang, . High-Quality Continuous-Wave Imaging with a 2.53THz Optical Pumped Terahertz Laser and a Pyroelectric Detector[J]. Chin. Phys. Lett., 2010, 27(12): 054201
[11] GE Fan, CHEN Lin-Fei, ZHAO Dao-Mu. Application of Cosine Zone Plates to Image Encryption[J]. Chin. Phys. Lett., 2008, 25(8): 054201
[12] LI Xin-Xin, ZHAO Dao-Mu. Optical Image Encryption with Simplified Fractional Hartley Transform[J]. Chin. Phys. Lett., 2008, 25(7): 054201
[13] ZHANG Ying-Tao, HE Chen-Juan, LI Hong-Guo, WANG Kai-Ge. Novel Ghost Imaging Method for a Pure Phase Object[J]. Chin. Phys. Lett., 2008, 25(7): 054201
[14] ZHAO Hao-Xin, XU Bing, XUE Li-Xia, DAI Yun, LIU Qian, RAO Xue-Jun. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes[J]. Chin. Phys. Lett., 2008, 25(4): 054201
[15] GAO Lu, XIONG Jun, ZHANG Shu-Heng, WANG Wei, WANG Kai-Ge. Improving Visibility of Diffraction Pattern with Pseudo-Thermal Light[J]. Chin. Phys. Lett., 2008, 25(4): 054201
Viewed
Full text


Abstract