Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050301    DOI: 10.1088/0256-307X/27/5/050301
GENERAL |
A New Kind of Integration Transformation in Phase Space Related to Two Mutually Conjugate Entangled-State Representations and Its Uses in Weyl Ordering of Operators
LV Cui-Hong1, FAN Hong-Yi1,2
1Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026 2Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
LV Cui-Hong, FAN Hong-Yi 2010 Chin. Phys. Lett. 27 050301
Download: PDF(316KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the two mutually conjugate entangled state representations |ξ> and |η>, we propose an integration transformation in ξ-η phase space , and its inverse transformation, which possesses some well-behaved transformation properties, such as being invertible and the Parseval theorem. This integral transformation is a convolution, where one of the factors is fixed as a special normalized exponential function. We generalize this transformation to a quantum mechanical case and apply it to studying the Weyl ordering of bipartite operators, regarding to (Q1-Q2)↔(P1-P2) ordered and simultaneously (P1+P2)↔(Q1+Q2) ordered operators.
Keywords: 03.65.-w      02.90.+p     
Received: 26 November 2009      Published: 23 April 2010
PACS:  03.65.-w (Quantum mechanics)  
  02.90.+p (Other topics in mathematical methods in physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Cui-Hong
FAN Hong-Yi
[1] Fan H Y 2008 Commun. Theor. Phys. 50 935
[2] Weyl H Z 1927 Physics 46 1
[3] Wünsche A 1996 Quantum Semiclass. Opt. 8 343
[4] Agarwal G S and Wolf E 1970 Phys. Rev. D 2 2161
[5] Peřina J 1985 Coherence of Light 2nd edn (Dordrecht: Kluwer)
[6] Fan H Y 2008 Ann. Phys. 323 500
[7] Einstein A et al 1935 Phys. Rev. 47 777
[8] Hu L Y and Fan H Y 2009 Chin. Phys. Lett. 26 060307
[9] Fan H Y and Hu L Y 2008 Chin. Phys. Lett. 25 513
[10] Fan H Y et al 2008 Chin. Phys. Lett. 25 3539
[11] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[12] Fan H Y 1992 J. Phys. A 25 3443
[13] Fan H Y et al 2007 Commun. Theor. Phys. 47 431
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 050301
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 050301
[3] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 050301
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 050301
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 050301
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 050301
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 050301
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 050301
[9] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 050301
[10] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 050301
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 050301
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 050301
[13] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 050301
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 050301
[15] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 050301
Viewed
Full text


Abstract