Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 050201    DOI: 10.1088/0256-307X/27/5/050201
GENERAL |
The Multi-Function Jaulent-Miodek Equation Hierarchy with Self-Consistent Sources
YU Fa-Jun
School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034
Cite this article:   
YU Fa-Jun 2010 Chin. Phys. Lett. 27 050201
Download: PDF(283KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multi-functions of soliton equation hierarchy with self-consistent sources is constructed. Then, the Jaulent-Miodek (JM) equation hierarchy with self-consistent sources is derived. Furthermore, the multi-function JM equation hierarchy with self-consistent sources is presented by using the higher-dimensional Lax pairs.
Keywords: 02.30.Ik     
Received: 06 January 2010      Published: 23 April 2010
PACS:  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/050201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/050201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Fa-Jun
[1] Ma W X and Fuchssteiner B 1997 Chaos Solitons Fractals 7 1227
[2] Ma W X 2000 Methods Appl. Anal. 7 21
[3] Ma W X and Fuchssteiner B 1996 Phys. Lett. A 213 49
[4] Ma W X 2003 Phys. Lett. A 316 72
[5] Ma W X 2005 J. Math. Phys. 46 033507
[6] Ma W X, Xu X X and Zhang Y F 2006 J. Math. Phys. 47 053501
[7] Ma W X, Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125
[8] Guo F G and Zhang Y F 2003 J. Math. Phys. 44 5793
[9] Yu F J and Zhang H Q 2006 Phys. Lett. A 353 326
[10]Zhang Y F and Fan E G 2008 Commun. Theor. Phys. 49 845 (China)
[11] Ma W X and Chen M 2006 J. Phys. A: Gen. Math. 39 10787
[12] Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equation and Inverse Scattering (Cambridge: Cambridge University)
[13]Mel'nikov V K 1986 Phys. Lett. A 118 22
[14] Mel'nikov V K 1987 Commun. Math. Phys. 112 639
[15] Mel'nikov V K 1988 Phys. Lett. A 113 493
[16] Zeng Y B, Ma W X and Shao Y J 2001 J. Math. Phys. 42 2113
[17] Matsuno Y 1991 J. Phys. A 24 L273
[18] Hu X B 1991 J. Phys. A 24 5489
[19] Hu X B 1996 Chaos, Soliton and Fractals 7 211
[20]Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
[21]Tu G Z 1989 J. Math. Phys. 33 330
[22]Lax P D 1975 Commmun. Pure Appl. Math. 28 141
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050201
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 050201
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 050201
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 050201
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 050201
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 050201
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 050201
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050201
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050201
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 050201
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 050201
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 050201
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 050201
[14] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 050201
[15] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 050201
Viewed
Full text


Abstract