Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 125203    DOI: 10.1088/0256-307X/27/12/125203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability
YE Wen-Hua1,2,3**, WANG Li-Feng2,3,4, HE Xian-Tu1,2,3
1Department of Physics, Zhejiang University, Hangzhou 310027
2CAPT, Peking University, Beijing 100871
3LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088
4SMCE, China University of Mining and Technology, Beijing 100083
Cite this article:   
YE Wen-Hua, WANG Li-Feng, HE Xian-Tu 2010 Chin. Phys. Lett. 27 125203
Download: PDF(837KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh–Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T)=κSH[1+f(T)], where κSH is the Spitzer–Härm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin–Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI.
Keywords: 52.57.Fg      47.20.Ma      52.35.Py     
Received: 05 July 2010      Published: 23 November 2010
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/125203       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/125203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Wen-Hua
WANG Li-Feng
HE Xian-Tu
[1] Lindl J D, Amendt P and Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffan R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[2] Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inerial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Mater (OxfordOxford: University Press)
[3] Shigemori K, Azechi H, Nakai M, Honda M, Meguro K, Miyanaga N, Takabe H and Mima K 1997 Phys. Rev. Lett. 78 250
[4] Glendinning S G, Dixit S N, Hammel B A, Kalantar D H, Key M H, Kilkenny J D, Knauer J P, Pennington D M, Remington B A, Wallace R J, and Weber S V 1997 Phys. Rev. Lett. 78 3318
[5] Sakaiya T, Azechi H, Matsuoka M, Izumi N, Nakai M, Shigemori K, Shiraga H, SunaharaA, Takabe H and Yamanaka T 2002 Phys. Rev. Lett. 88 145003
[6] Azechi H, Sakaiya T, Fujioka S, Tamari Y, Otani K, Shigemori K, Nakai M, Shiaga H, Miyanaga N and Mima K 2007 Phys. Rev. Lett. 98 045002
[7] Sanz J, Ramírez J, Ramis R, Betti R and Town R P J 2002 Phys. Rev. Lett. 89 195002
[8] Garnier J, Raviart P -A, Cherfils-Clèrouink C and Masse L 2003 Phys. Rev. Lett. 90 185003
[9] Ikegawa T, Nishihara K 2002 Phys. Rev. Lett. 89 115001
[10] Sanz J 2002 Phys. Rev. Lett. 73 (20) 2700
[11] Pirize A P, Sanz J and Ibañez L F 1997 Phys. Plasmas 4 1117
[12] Goncharov V N, Betti R, McCrory R L, Sorotokin P and Verdon C P 1996 Phys. Plasmas 3 1402
[13] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas 5 1446
[14] Masse L 2007 Phys. Rev. Lett. 98 245001
[15] Remington B A, Haan S W, Glendinning S G, Kilkenny J D, Munro D H and Wallace R J 1992 Phys. Fluids B 4 967
[16] Remington B A, Drake R P, Takabe H and Arnett D 2000 Phys. Plasmas 7 1641
[17] Mason R J, Hollowell D E, Schappert G T and Batha S H 2001 Phys. Plasmas 8 2338
[18] Nakai S, Yamanaka T, Izawa Y, Kato Y, Nishihara K, Nakatsuka M, Sasaki T, Takabe H, et al 1995 Plasma Physics and Controlled Fusion Research 1994, Fifteen International Conference Proceedings (Seville Spain 28 September–1 Octoober 1994) (IAEA: Vienna) vol 3 p 3
[19] Kane J O, Robey H F, Remington B A, Drake R P, Knauer J, Ryutov D D, Louis H, Teyssier R, Hurricane O, Arnett D, Rosner R and Calder A 2001 Phys. Rev. E 63 055401
[20] Ye Wenhua, Zhang Weiyan and He X T 2002 Phys. Rev. E 65 57401
[21] Wang L F, Ye W H, Fan Z F, Li Y J, He X T and Yu M Y 2009 Europhys. Lett. 86 15002
[22] Wang L F, Ye W H and Li Y J 2009 Europhys. Lett. 87 54005
[23] Wang L F, Ye W H and Li Y J 2010 Phys. Plasmas 17 052305
[24] Wang L F, Xue C, Ye W H and Li Y J 2009 Phys. Plasmas 16 112104
[25] Wang L F, Ye W H, Fan Z F and Li Y J 2010 Europhys. Lett. 89 15001
[26] Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025202
Related articles from Frontiers Journals
[1] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 125203
[2] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 125203
[3] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 125203
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 125203
[5] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 125203
[6] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 125203
[7] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 125203
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 125203
[9] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 125203
[10] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 125203
[11] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 125203
[12] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 125203
[13] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 125203
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 125203
[15] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 125203
Viewed
Full text


Abstract