Chin. Phys. Lett.  2010, Vol. 27 Issue (12): 125201    DOI: 10.1088/0256-307X/27/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field
G. A. Hoshoudy
Department of Applied Mathematics, Faculty of Science, South Valley University, Kena 83523, Egypt
Cite this article:   
G. A. Hoshoudy 2010 Chin. Phys. Lett. 27 125201
Download: PDF(516KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum effects on Rayleigh–Taylor instability of a stratified incompressible plasmas layer under the influence of vertical magnetic field are investigated. The solutions of the linearized equations of motion together with the boundary conditions lead to deriving the relation between square normalized growth rate and square normalized wave number in two algebraic equations and are numerically analyzed. In the case of the real solution of these two equations, they can be combined to generate a single equation. The results show that the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration.
Keywords: 52.35.Py      52.30.Cv     
Received: 01 February 2010      Published: 23 November 2010
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/12/125201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I12/125201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
G. A. Hoshoudy
[1] Markowic P A, Ringhofer C and Schmeiser C 1990 Semiconductor Equations (New York: Springer-Verlag)
[2] Opher M et al 2001 Phys. Plasmas 8 2454
[3] Jung Y D 2001 Phys. Plasmas 8 3842
[4] Kremp D et al 1999 Phys. Rev. E 60 4725
[5] Leontovich M and Akad Lzv 1994 Nauk SSSR 8 16
[6] Agrawal G 1995 Nonlinear Fiber Optics (San Diego: Academic)
[7] Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[8] Manfredi G 2005 How to Model Quantum Plasmas (Fields Institute Communications) ser 46 pp 263–287
[9] Gardner G 1994 SIAM J. Appl. Math. 54 409
[10] Haas F et al 2002 Phys. Rev. E 62 2763
[11] Haas F 2005 Phys. Plasmas 12 062117
[12] Lundin J et al 2008 Phys. Plasmas 15 072116
[13] Rayleigh L 1883 Proc. Math. Soc. London 14 170
[14] Taylor G I 1950 Proc. R. Soc. London A 201 192
[15] Vitaly B et al 2008 Phys. Lett. A 372 3042
[16] Cao J T et al 2008 Phys. Plasmas 15 012110
[17] Hoshoudy G A 2009 Phys. Plasmas 16 024501
[18] Hoshoudy G A 2009 Phys. Plasmas 16 064501
[19] Modestov M et al 2009 Phys. Plasmas 16 032106
[20] Hoshoudy G A 2009 Phys. Lett. A 373 2560
[21] Ali S et al 2009 Phys. Lett. A 373 2940
[22] Brodin G et al 2008 Phys. Rev. Lett. 100 175001
[23] Bhimsen Shivamoggi K 1981 Astrophys. Space Sci. 79 3
[24] Liberatore S et al 2009 Phys. Plasmas 16 044502
[25] Goldston R J and Rutherford P H 1997 Introduction to Plasma Physics Institute of Physics (Bristol: Institute of Physics Publishing) chap 19 p 309
Related articles from Frontiers Journals
[1] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 125201
[2] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 125201
[3] JI Zhen, **, ZHOU Yu-Fen, HOU Tian-Xiang . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation[J]. Chin. Phys. Lett., 2011, 28(7): 125201
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 125201
[5] JI Zhen, ZHOU Yu-Fen. A Comparison Study of Three CESE Schemes in MHD Simulation[J]. Chin. Phys. Lett., 2010, 27(8): 125201
[6] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 125201
[7] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 125201
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 125201
[9] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet[J]. Chin. Phys. Lett., 2010, 27(12): 125201
[10] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 125201
[11] MA Zhi-Wei, LU Xing-Qiang. An Island Coalescence Scenario for Near-Earth Current Disruption in the Magnetotail[J]. Chin. Phys. Lett., 2009, 26(8): 125201
[12] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 125201
[13] XIONG Ming, PENG Zhong, HU You-Qiu, ZHENG Hui-Nan. Response of the Earth's Magnetosphere and Ionosphere to Solar Wind Driver and Ionosphere Load: Results of Global MHD Simulations[J]. Chin. Phys. Lett., 2009, 26(1): 125201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 125201
[15] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 125201
Viewed
Full text


Abstract