CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Inverted Bottom-Emission Organic Light Emitting Diode Using Two n-Doped Layers for the Enhanced Performance |
CHENG Cui-Ran, CHEN Yu-Huan, QIN Da-Shan**, QUAN Wei, LIU Jin-Suo |
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130
|
|
Cite this article: |
CHENG Cui-Ran, CHEN Yu-Huan, QIN Da-Shan et al 2010 Chin. Phys. Lett. 27 117801 |
|
|
Abstract We fabricate an inverted bottom-emission organic light emitting diode (IBOLED) employing two n-doped layers, i.e., 5 nm lithium carbonate doped PTCDA (1:2 Li2CO3:PTCDA) with 5 nm Li2CO3 doped BCP (1:4 Li2CO3:BCP) on top, where PTCDA and BCP stand for 3, 4, 9, 10 perylenetetracarboxylic dianhydride and bathcuporine, respectively. Compared to the IBOED using a layer of 10 nm 1:4 Li2CO3:BCP, the one utilizing the two-layer combination of 5 nm 1:2 Li2CO3:PTCDA and 5 nm 1:4 Li2CO3:BCP shows decreasing operation voltage and thereby increasing power efficiency, mainly attributed to the higher electron conductivity of 1:2 Li2CO3:PTCDA than that of 1:4 Li2CO3:BCP. The mechanism of the electron transport through the interface of 1:2 Li2CO3:PTCDA and 1:4 Li2CO3:BCP is also discussed. We provide a simply and effective structure to enhance the current conduction for IBOLEDs.
|
Keywords:
78.60.Fi
72.80.Le
|
|
Received: 12 April 2010
Published: 22 October 2010
|
|
PACS: |
78.60.Fi
|
(Electroluminescence)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
|
|
|
[1] Zhou X, Pfeiffer M, Huang J S, Blochwitz-Nimoth J, Qin D S, Werner A, Drechesel J, Maennig B and Leo K 2002 Appl. Phys. Lett. 81 922
[2] Xiong T, Wang F X, Qiao X F and Ma D G 2008 Appl. Phys. Lett. 92 263305
[3] Chen S Y, Chu T Y, Chen J F, Su C Y and Chen C H 2006 Appl. Phys. Lett. 89 053518
[4] Chu T Y, Chen J F, Chen S Y and Chen C H 2006 Appl. Phys. Lett. 89 113502
[5] Yun Ch H, Cho H, Kang H, Lee Y M, Park Y and Yoo S 2009 Appl. Phys. Lett. 95 053301
[6] Gu G, Bulovic V, Burrows P E, Forrest S R and Thompson M E 1996 Appl. Phys. Lett. 68 2606
[7] Burrows P E, Gu G, Forrest S R, Vicenzi E P and Zhou T X 2000 J. Appl. Phys. 87 3080
[8] Hung L S and Tang C W 1999 Appl. Phys. Lett. 74 3209
[9] Parthasarathy G, Adachi C, Burrows P E and Forrest S R Appl. Phys. Lett. 76 2128
[10] Walzer K, Maennig B, Pfeiffer M and Leo K 2007 Chem. Rev. 107 1233
[11] Wuesten J, Ziegler C and Ertl T 2006 Phys. Rev. B 74 125205
[12] Parthasarathy G, Shen C, Kahn A and Forrest S R 2001 J. Appl. Phys. 89 4986
[13] Cao G H, Qin D S, Cao J S, Guan M, Zeng Y P and Li J M 2008 Chin. Phys. B 17 911
[14] Zhao Y Q, Huang C J, Ogundimu T and Lu Z H 2007 Appl. Phys. Lett. 91 103109
[15] Heiander M G, Wang Z B and Lu Z H 2008 Appl. Phys. Lett. 93 083311
[16] Bulovid V, Burrows P E, Forrest S R, Cronin J A and Thompson M E 1996 Chem. Phys. 210 1
[17] Zahn D R T, Gavrila G N and Salvan G 2007 Chem. Rev. 107 1161
[18] Yuan Y, Grozea D, Han S and Lu Z H 2004 Appl. Phys. Lett. 85 4959
[19] Hudej R, Zavrtanik M, Brownell J N and Bratina G 2001 Mater. Tehnol. 35 151
[20] Itomo K, Ogawa H and Shirota Y 1998 Appl. Phys. Lett. 72 636
[21] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2007 Chin. Phys. Lett. 24 1380
[22] Xue J G, Rand B P, Uchida S and Forrest S R 2005 J. Appl. Phys. 98 124903
[23] Kahn A, Zhao W, Gao W Y, Vazquez H and Flores F 2006 Chem. Phys. 325 129
[24] Hill I G, Rajagopal A and Kahn A 1998 Appl. Phys. Lett. 73 662
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|