Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 108701    DOI: 10.1088/0256-307X/27/10/108701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Optical Trapping of Double-Ring Radially Polarized Beam with Improved Axial Trapping Efficiency
YAO Bao-Li, YAN Shao-Hui, YE Tong, ZHAO Wei
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119
Cite this article:   
YAO Bao-Li, YAN Shao-Hui, YE Tong et al  2010 Chin. Phys. Lett. 27 108701
Download: PDF(560KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Radially polarized beams, focused by a high numerical aperture (NA) objective, have non-propagating fields along the propagation axis in the focal region, which leads to a higher axial trapping efficiency in comparison with linearly polarized beams. We propose a design for converting a lowest-order radially polarized beam (R-TEM01) to a double−ring radial polarization distribution (DR R-TEM01) through a specially designed polarization rotator. The phases of the two rings of this beam differ by π. Numerical results evaluated by rigorous T−matrix method show that the DR R-TEM01 beam can improve the axial trapping efficiency compared with the R−TEM01 beam, provided that the size of trapped particles is of order of the wavelength of the beam.
Keywords: 87.80.Cc      42.25.Fx     
Received: 08 April 2010      Published: 26 September 2010
PACS:  87.80.Cc (Optical trapping)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/108701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/108701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Bao-Li
YAN Shao-Hui
YE Tong
ZHAO Wei
[1] Ashkin A et al 1986 Opt. Lett. 11 288
[2] Chu S 1998 Rev. Mod. Phys. 70 685
[3] Yin H et al 1995 Science 270 1653
[4] Perkins T T et al 1990 Science 268 83
[5] Ashkin A 1992 Biophys. J. 61 569
[6] Harada Y and Asakura T 1996 Opt. Commun. 124 529
[7] Kozawa Y and Sato S 2005 Opt. Lett. 30 3603
[8] Shoham A et al 2006 Opt. Lett. 31 3405
[9] Machavariani G et al 2007 Opt. Lett. 32 1468
[10] Maurer C et al 2007 New J. Phys. 9 78
[11] Zhan Q 2004 Opt. Express 12 3377
[12] Kawauchi H et al 2007 Opt. Lett. 32 1839
[13] Yan S and Yao B 2007 Phys. Rev. A 76 053836
[14] Simpson S H et al 2007 J. Opt. Soc. Am. A 24 430
[15] Yan S and Yao B 2007 J. Opt. Soc. Am. B 24 1596
[16] Zhao Y, Zhan Q et al 2005 Opt. Lett. 30 848
[17] Kozawa Y and Sato S 2006 Opt. Lett. 31 820
[18] Richards B and Wolf E 1959 Proc. Roy. Soc. A 253 358
[19] Youngworth K S and Brown T G 2000 Opt. Express 7 77
[20] Nesterov A V et al 2000 J. Phys. D: Appl. Phys. 33 1817
[21] Mishchenko M I, Travis L D and Lacis A A 2002 Scattering, Absorption, and Emission of Light by Small Particles (Cambridge: Cambridge University) Appendix C pp 370-379
[22] Barton J P et al 1989 J. Appl. Phys. 66 4594
[23] Lock J A 2004 Appl. Opt. 43 2545
Related articles from Frontiers Journals
[1] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 108701
[2] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 108701
[3] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 108701
[4] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 108701
[5] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 108701
[6] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 108701
[7] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 108701
[8] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 108701
[9] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 108701
[10] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 108701
[11] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 108701
[12] SUN Ji-Yu, **, XIE Hong . Recurrence Formulas for the Mie Series[J]. Chin. Phys. Lett., 2011, 28(10): 108701
[13] LIN Zhi-Wei**, XU Xin, ZHANG Xiao-Juan, FANG Guang-You . An Inverse Electromagnetic Scattering Method for One-Dimensional Inhomogeneous Media[J]. Chin. Phys. Lett., 2011, 28(1): 108701
[14] LIN Zhi-Wei**, XU Xin, ZHANG Xiao-Juan, FANG Guang-You . Electromagnetic Scattering and Inverse Scattering of Layered Media with a Slightly Rough Surface[J]. Chin. Phys. Lett., 2011, 28(1): 108701
[15] LU Yun-Qing, LI Pei-Li, ZHENG Jia-Jin. The Axial Spatial Evolution of Optical Field near the Talbot Plane of a Grating[J]. Chin. Phys. Lett., 2010, 27(9): 108701
Viewed
Full text


Abstract